大数据_存储
文章平均质量分 60
主要记录一些大数据存储组件的问题
chenyanlong_v
打铁还需自身硬
展开
-
Clickhouse_表引擎
Clickhouse表引擎原创 2022-11-03 23:13:02 · 857 阅读 · 0 评论 -
Hadoop 3.X 纠删码介绍和使用
Hadoop 3.x引入了纠删码技术(Erasure Coding),它可以提高50%以上的存储利用率,并且保证数据的可靠性。转载 2022-10-18 16:38:51 · 346 阅读 · 0 评论 -
Hbase、Kudu和Clickhouse对比
总结:Hbase更适合非结构化的数据存储;在既要求随机读写又要求实时更新的场景,Kudu+Impala可以很好的胜任,当然再结合CDH就更好了,瓶颈并不在Kudu,而在Impala的Apache部署,特别麻烦。详见 Apache集群安装Impala如果只要求静态数据的极速查询能力,Clickhouse则更好。原创 2022-10-18 15:55:32 · 563 阅读 · 0 评论