数学物理方法

得到

留数

留数定理

留数定理:
f(z)在l围道内有k个孤立奇点bk,其他点均解析
∮ l f ( z ) d z = 2 π i ∑ k = 1 n r e s f ( b k ) (1) \oint_l{f(z)dz} = 2 \pi i \sum_{k=1}^n resf(b_k) \tag {1} lf(z)dz=2πik=1nresf(bk)(1)
其中,
r e s f ( b k ) = C − 1 (2) resf(b_k) = C_{-1}\tag {2} resf(bk)=C1(2)
定义为留数,留数等于洛朗展开后1/z-bk的系数。

由于:
∮ l f ( z ) d z = ∑ k = 1 n ∮ l k f ( z ) d z (3) \oint_l{f(z)dz} = \sum_{k=1}^n \oint_{l_k}{f(z)dz}\tag {3} lf(z)dz=k=1nlkf(z)dz(3)

r e s f ( b k ) = 1 2 π i ∮ l k f ( z ) d z (4) resf(b_k) = \frac{1}{2 \pi i}\oint_{l_k}{f(z)dz} \tag {4} resf(bk)=2πi1lkf(z)dz(4)

有限元点b如果是解析点,留数为0,无穷远点的留数不一定,只能展开后看。

无穷远点的留数定义为:
r e s f ( ∞ ) = 1 2 π i ∮ l f ( z ) d z , l 为 顺 时 针 (5) resf(\infty) = \frac{1}{2 \pi i}\oint_{l}{f(z)dz} ,l为顺时针\tag {5} resf()=2πi1lf(z)dzl(5)
计算后得(负号是因为定义的时候是顺时针):
r e s f ( ∞ ) = − C − 1 (6) resf(\infty) = -C_{-1} \tag {6} resf()=C1(6)
说明无穷远点的留数等于在原点展开的洛朗级数的-1次项的相反数。

如果f(z)在全平面只有孤立奇点,则全平面所有留数的和为0,因此计算某圆内部留数和可以改为算外部留数和的相反数。

留数的计算

  1. 如果b是本性奇点
    只能将f(z)在b点展开为洛朗级数,根据(2)来算

  2. 如果b是n阶极点,
    可以根据(4)转为积分,然后用柯西积分公式(及推论)算积分。

如果f(z)可以写成:
f ( z ) = ϕ ( z ) ( z − b ) n , 其 中 ϕ ( b ) ≠ 0 且 在 l 内 解 析 f(z)=\frac{\phi(z)}{(z-b)^n}, 其中\phi(b) \ne 0 且在l内解析 f(z)=(zb)nϕ(z),ϕ(b)=0l

r e s f ( b ) = 1 2 π i ∮ l f ( z ) d z = ϕ ( n − 1 ) ( z ) ∣ z = b ( n − 1 ) ! resf(b) =\frac{1}{2 \pi i}\oint_{l}{f(z)dz} =\frac{\phi ^{(n-1)}(z)|_{z=b}}{(n-1)!} resf(b)=2πi1lf(z)dz=(n1)!ϕ(n1)(z)z=b

如果可以写成
f ( z ) = ϕ ( z ) Φ ( z ) , 其 中 ϕ ( b ) ≠ 0 且 ϕ 在 l 内 解 析 , b 是 Φ ( z ) 一 阶 零 点 , 且 在 l 内 解 析 f(z) = \frac{\phi(z)}{\Phi(z)},其中\phi(b) \ne 0 且\phi在l内解析,b是\Phi(z)一阶零点, 且在l内解析 f(z)=Φ(z)ϕ(z),ϕ(b)=0ϕlbΦ(z)l
则:
r e s f ( b ) = ϕ ( z ) Φ ′ ( z ) resf(b) =\frac{\phi(z)}{\Phi '(z)} resf(b)=Φ(z)ϕ(z)

计算出留数以后,可以用(4)计算复变函数的积分。直接用柯西积分公式也可以算积分。

用留数定理计算实积分

以往的积分方法适用范围有限,当涉及到无穷、三角函数、积分路径有奇点时的积分时,高数的方法无能为力。

用留数定理计算实积分的核心是:通过变量替换等方式,把积分路径改成复平面内的一段封闭曲线

无穷积分

要求的积分中,积分范围是负无穷到正无穷。我们在复平面上扩展积分范围为:包括实轴的正半平面。

在这里插入图片描述
在这里插入图片描述

含有三角函数的无穷积分

在这里插入图片描述

注意f(x)在实轴上无奇点;z无穷时,趋于0.

更一般地,对于非奇非偶函数,可以计算负无穷到正无穷的积分(不能是0到无穷):
∫ − ∞ ∞ f ( x ) c o s p x d x + i ∫ − ∞ ∞ f ( x ) s i n p x d x = ∫ − ∞ ∞ f ( x ) e i p x d x = 2 π i ∑ R e s f ( b k ) ∣ I m b k > 0 \int_{-\infty}^\infty f(x)cospxdx+i\int_{-\infty}^\infty f(x)sinpxdx =\int_{-\infty}^\infty f(x)e^{ipx}dx =2\pi i \sum Resf(b_k)|Imb_k>0 f(x)cospxdx+if(x)sinpxdx=f(x)eipxdx=2πiResf(bk)Imbk>0
右边的实部对应cos,虚部对应sin

三角函数的有理式积分

∫ 0 2 π R ( c o s θ , s i n θ ) d θ = 2 π i ∑ k = 1 n r e s f ( z ) ∣ ∣ z ∣ < 1 , 其 中 R 为 有 理 函 数 , 且 连 续 。 \int_0^{2\pi}R(cos\theta,sin\theta)d\theta=2\pi i \sum_{k=1}^n resf(z)|_{|z|<1},其中R为有理函数,且连续。 02πR(cosθ,sinθ)dθ=2πik=1nresf(z)z<1R
其中
f ( z ) = 1 i z R ( z + z − 1 2 , z − z − 1 2 i ) f(z) = \frac{1}{iz}R(\frac{z+z^{-1}}{2},\frac{z-z^{-1}}{2i}) f(z)=iz1R(2z+z1,2izz1)

约旦引理

在这里插入图片描述

积分路径上存在有限个单奇点

小弧引理
在这里插入图片描述
在这里插入图片描述

物理学中若干积分

迪利克莱积分

∫ 0 ∞ s i n x x d x \int_0^{\infty}\frac{sinx}{x}dx 0xsinxdx
f(z)在积分路径上有奇点。

在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值