win10+python快速实践1
python安装选择
安装选择:
1.安装anaconda(里面集成了很多关于python科学计算的第三方库,主要是安装方便)
2.单独装python
安装anaconda
1.使用清华镜像站,速度快,但可能不是最新版本,需安装后进行升级
2.安装文件地址:link
3.选择对应版本进行下载安装,并运行Anaconda Navigator Updater
4.配置环境变量:如果你在安装过程中勾选了Add PATH 那个选项,那么你不需要额外配置环境变量,但是如果你没有勾选(默认是不勾选的),那么你需要按照以下标准去配置(路径根据自己的安装位置变化)
全局升级命令:
conda upgrade -n base -c defaults --override-channels conda
Anaconda3镜像源修改
conda config --show-sources #查看Anaconda中已经添加的镜像
conda config --add channels xxx #增加一个新的镜像源,地址XXX
conda config --remove channels xxx #移除镜像源,地址XXX
镜像源:
清华大学镜像站:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
上海交通大学镜像站:
- https://mirrors.sjtug.sjtu.edu.cn/anaconda/pkgs/main/
- https://mirrors.sjtug.sjtu.edu.cn/anaconda/pkgs/free/
- https://mirrors.sjtug.sjtu.edu.cn/anaconda/cloud/conda-forge/
中国科学技术大学镜像站:
- https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
- https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
- https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
不配置镜像源,安装时指定镜像源安装(临时有效)
conda install -c 镜像源地址 package
conda install --channel 镜像源地址 package
如安装多版本python需,指定运行对应版本python
输入Python39 –m pip --version查看当前Python对应的pip版本;
输入Python39 –m pip list查看当前Python对应的pip安装的第三方库;
输入Python39 –m pip install 库名 即可安装对应的扩展库;
输入Python39 –m pip uninstall 库名 即可卸载对应的扩展库;
运行yolov5
1.拉取yolov5源码:
https://github.com/ultralytics/yolov5 link
pip install -r requirements.txt (批量安装库)
指定python版本:python39 -m pip install -r requirements.txt
python detect.py --source data/images/ --weights yolov5s.pt --conf 0.4 (测试是否安装完毕)
python虚拟环境搭建
1.安装三个第三方库
python39 -m pip install virtualenv
python39 -m pip install virtualenvwrapper-win
python39 -m pip install pipenv
2.配置虚拟环境存储位置,(配置虚拟环境安装目录)
whereis virtualenvwrapper (查询安装位置)
D:\Anaconda3\Scripts\virtualenvwrapper.bat
查看对应变量名称:
3.virtualenv使用
workon #查看有哪些虚拟环境
mkvirtualenv 虚拟环境名称 #新增虚拟环境
deactivate #退出虚拟环境
rmvirtualenv #删除虚拟环境
workon 虚拟环境名称 #进入虚拟环境
pip freeze >requirements.txt #导出当前环境
pip install -r requirements.txt #恢复环境
在虚拟环境中pip命令安装第三方库,作为当前虚拟环境专用,但有一个问题:在uninstall 的时候,安装第三方库时安装的有些依赖包,在进行卸载的时候不会被卸载
4.pipenv介绍
pipenv集成了pip、virtualenv两者的功能,且完善了两者的一些缺陷。
Pipenv使用pipfile和pipfile.lock。
pipfile文件:用来记录项目依赖包列表。保存项目的python版本、依赖包等相关信息。
pipfile.lock文件:记录了固定版本的详细依赖包列表,查看依赖关系十分方便。用于对pipfile的锁定。
Pipfile文件可以单独移放到其他项目内,用于项目虚拟环境的建立和依赖包的安装
支持Python2和Python3,mac、win、linux在各个平台命令都是一样的。
各个地方使用了哈希校验,无论安装还是卸载包都十分安全。
5.pipenv使用
在项目路径下执行:
若项目目录中虚拟环境未创建且无Pipfile文件,将安装虚拟环境并创建Pipfile文件
若项目目录中虚拟环境未创建且有Pipfile文件,将根据Pipfile文件来安装相应python版本和依赖包
若项目目录中虚拟环境已创建且有Pipfile文件,将根据Pipfile文件来安装依赖包
pipenv install #创建虚拟环境
创建成功后会出现两个文件
修改Pipfile与Pipfile.lock文件中默认的url源为国内源,提升下载速度
默认:“url”: “https://pypi.org/simple”,
清华:“url”: “https://pypi.tuna.tsinghua.edu.cn/simple”,
默认:url = “https://pypi.org/simple”
清华:url = “https://pypi.tuna.tsinghua.edu.cn/simple”
中国科学技术大学:https://pypi.mirrors.ustc.edu.cn/simple
豆瓣:http://pypi.douban.com/simple/
6.pipenv操作命令
pipenv install django #安装django库到默认
pipenv install django --dev #安装django库到开发环境
恢复虚拟环境:把pipfile和pipfile.lock这两个文件放到新的项目中
pipenv install (只恢复默认环境下的包)
pipenv install --dev (恢复开发环境下的包)
pipenv graph #查看当前虚拟环境下安装的包
pipenv uninstall django #卸载指定django包并同时卸载相关依赖包
pipenv lock -r --dev > requirements.txt #生成 requirements.txt文件
pipenv install -r requirements.txt #安装环境,批量安装
pipenv --rm #删除虚拟环境
pipenv --where #列出本地项目路径
pipenv --venv #列出虚拟环境路径
pipenv graph #查看包依赖
pipenv lock #生成lock文件
pipenv shell #激活虚拟环境
exit #退出虚拟环境
开发工具
VScode开发工具+python插件