再写扩展欧几里得

一、首先系统的说一下扩展欧几里得求解线性方程的过程:

用扩展欧几里得接线性方程:ax + by = c;   (1)

用扩展欧几里得先求:ax + by = gcd(a, b);(2)得到解x0,y0

 对这一组解x0, y0得到方程(1)的解:如果c不是gcd(a,b)的倍数,方程(1)无解,

                                                                      否则有解, 另 a1 = a/gcd(a,b) ,    b1 = b/gcd(a,b);

                                                                        { x1 = x0 * (c/gcd(a,b))+ kb1
                                             解为:                   

                                                                        { y1 = y0 * (c/gcd(a,b)) - ka1

 

 

 

 

二、然后为什么通解是那样得到的?

1、下面具体说一下,先说扩展欧几里得求解ax + by = gcd(a, b):

              若ax1 + by1 = gcd(a, b)有解,那么bx2 + (a%b)y2 = gcd(b, a%b)同样有解。

                                                  且 gcd(a, b) = gcd(b, a%b);

                                          所以ax1 + by1 = bx2 + (a%b)y2

                                                             a%b = a - a/b*b                ---------------------这里的除号是整除

               因此又 可以变形为 bx2 + (a%b)y2 = bx2  - (a - a/b*b) * y2 = ay2 + b * (x2 - a/b*y2)

                                         所以:ax1 + by1 =  ay2 + b * (x2 - a/b*y2)

两边相等

                    {  x1 = y2
即 :              

                    { y1 = x2 - a/b*y2

因此当知道x2, y2时可以求x1, y1

如果使用欧几里得递归求d = gcd(a, b)的话,当最后状态就是 d*x + 0*y = gcd(a, b);

所以令x = 1, y = 0,  递归回到上一层就可以求出上一层的x,y了,因此可以用扩展的欧几里得求解线性方程组。

 

 

 

2、再说一下怎么得到方程(1)的一个解:

可以看到  x0, y0是    ax + by = gcd(a, b)   式的解,将  ax + by = gcd(a, b)   式转化一下:

                         (两边同乘以c/gcd(a,b))                 a* x * c/gcd(a,b) + b * y * c/gcd(a,b) = c =>

即比较(3)式和(1)式可知:

                                                                             { ax + by = c;   (1)
                                                               比较:                   

                                                                             {a * x * c/gcd(a,b) + b * y * c/gcd(a,b) = c  (3)

满足(3)式的解的x0, y0同乘以 c/gcd(a, b) 就是(1)式的解。

 

3、最后说一下说怎么得到的(1)式通解:

                                                            a * x2 * c/gcd(a,b) + b * y2 * c/gcd(a,b) = c = a * x3 * c/gcd(a,b) + b * y3 * c/gcd(a,b) 

整理得:

                                                            a *(  x2 * c/gcd(a,b) -  x3 * c/gcd(a,b)  ) =  b * (  y3 * c/gcd(a,b)  -  y2 * c/gcd(a,b)  )

  因为 a,b的最大公约数为 gcd(a,b)约去后分别记为  a1, b1;

所以=》                                             a1 *(  x2 * c/gcd(a,b) -  x3 * c/gcd(a,b)  ) =  b1 * (  y3 * c/gcd(a,b)  -  y2 * c/gcd(a,b)  )

所以上式要存在整数解,则令 : x2 * c/gcd(a,b) -  x3 * c/gcd(a,b)  = k * b1        k属于整数    (4)

所以=》                                                 a1 * k * b1 =  b1 * (  y3 * c/gcd(a,b)  -  y2 * c/gcd(a,b)  ) =》

                                                                       a1 * k =  y3 * c/gcd(a,b)  -  y2 * c/gcd(a,b)   (5)

(4)、(5)变形即得通解:

                                                                      { x2  = x3 * (c/gcd(a,b))+ kb1
                                            且解满足:                   

                                                                      { y2 =  y3 * (c/gcd(a,b))- ka1

所以解出一组(x ,  y),代入上式既得(1)式的通解。

 

 

三、扩欧的应用及模板:

得出ax + by = gcd(a, b)的解x1,x2或无解

1、而ax + by = c 的解在ax + by = gcd(a, b)有解的情况下,一般求解x最小正整数解:

可以由此得到: x = (x0 * ( c/gcd(a,b) )  )  % b1 + b1 ) % b1;

2、还可以用来求乘法逆元:

乘法逆元为:ax = 1(mod p)意思为:(a*x) % p = 1

a 和  x 互为 mod 的 乘法逆元, 因为上式可变形为:  ax = kp + 1  ==》  ax - kp = 1  ==》 a*x + (-k)*p = 1,可见当gcd(a,p) == 1时,即a , p互质时方程有解接出的x即为a mod  p时的乘法逆元,而一般求出来的时候有可能为负数,所以要变换一下:

x = (x0 * ( c/gcd(a,b) )  )  % b1 + b1 ) % b1;即的解。

代码:

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>


using namespace std;


void k_GCD(int a, int b, int &d, int &x, int &y)
{
    if(!b)
    {
        d = a, x = 1, y = 0;
    }
    else
    {
        k_GCD(b, a%b, d, y, x);
        y -= x*(a/b);
    }
}


int main()
{
    int a, b, c, d, x, y;

    scanf("%d%d%d", &a, &b, &c);
    k_GCD(a, b, d, x, y);
    if(c % d == 0)
    {
        x *= (c/d);
        y *= (c/d);
        if(x < 0)
        {
            int a0, b0;
            a0 = a / d;
            b0 = b / d;
            //b0 = b0 < 0 ? -b0 : b0;
            while(x < 0)
            {
                x += b0;
                y -= a0;
            }
        }
        printf("%d %d %d\n", x, y, d);
    }
    else
        printf("无解!\n");

    return 0;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值