转载请注明来源-作者@loongshawn:http://blog.csdn.net/loongshawn/article/details/53457953,建议读者阅读原文,确保获得完整的信息
1.背景
最近在应对一个数据查询导出模块,总体要求就是依据给定的SQL语句,输出其查询结果为csv或者xlsx文件。其中查询数据量可能会有大数据量,成百上千万都可能。
2.探讨
针对上述数据导出这个问题,提取出几个关键词:
- 1、SQL是由作业人员临时写的。
- 2、数据量大。
- 3、输出csv或xlsx文件。
针对这几个关键词,咱分别扩展下其含义:
第一个关键词:SQL是临时写的,这就意味着咱只是去执行这条语句,并不能对语句进行分页设计啥的,如果要重新分析SQL可能比较困难。这个时候比较贴近的场景就是“数据库查询客户端”,客户端只管执行SQL,至于执行得快慢等取决于语句及数据库性能等。
第二个关键词:数据量大,即查询的返回结果可能比较多,你如何处理返回结果,是将其先存到List列表还是直接在结果集里面就给输出到文件。这就需要考虑内存、机器性能问题,不要一条语句执行了,直接导致你的java程序死掉了,比如JVM内存溢出,CPU使用率蹭蹭的涨到99%,导致整个程序无响应。
第三个关键词:输出csv或xlsx文件,比如csv是利用成熟的三方库还是自己写(毕竟就是逗号分隔的文本),不同人可能有不同看法,但是我主张大家用现成的三方依赖包,比如javacsv\opencsv都是比较成熟的工具包。
其中,有关csv读写在文章《 利用JavaCSV API来读写csv文件》中有详细介绍。而有关xlsx读写需要的jar包则在前面的文章《 Java处理excel两种不同的方式》有过介绍。
3.实现
在实例“Java导出数据库查询结果”中,我选取的实现方法为直接在ResultSet结果集中将数据写入到文件,这么操作基于两点:
- 1、做分页困难,没法降低查询数据量。
- 2、大数据量内存稀缺,尽量减少重复数据存储。
3.1导出csv
使用的依赖库:
<!-- https://mvnrepository.com/artifact/net.sourceforge.javacsv/javacsv -->
<dependency>
<groupId>net.sourceforge.javacsv</groupId>
<artifactId>javacsv</artifactId>
<version>2.1</version>
</dependency>
截取部分代码片段
// 判断文件是否存在,存在则删除,然后创建新表格
File tmp = new File(filePath);
if (tmp.exists()){
if (tmp.delete()){
logger.info(filePath + Constant.DUPLICATE_FILE_DELETE);
}
}
// 创建CSV写对象
CsvWriter csvWriter = new CsvWriter(filePath,Constant.SEPARATOR, Charset.forName("GBK"));
// 数据查询开始
preparedStatement = connection.prepareStatement(sql);
resultSet = preparedStatement.executeQuery();
// 获取结果集表头
ResultSetMetaData md = resultSet.getMetaData();
int columnCount = md.getColumnCount();
logger.debug("返回结果字段个数:" + columnCount);
JSONArray columnName = new JSONArray();
for (int i = 1; i <= columnCount; i++) {
JSONObject object = new JSONObject();
object.put(KEY.COLUNM_NAME,md.getColumnName(i));
columnName.add(object);
}
// 获取表头数组
int columnSize = columnName.size();
String[] columnNameList = ListUtil.getListFromJSONArray(columnName);
csvWriter.writeRecord(columnNameList);
// 数据记录数
int i = 0;
// 临时数据存储
StringBuffer stringBuffer = new StringBuffer();
while (resultSet.next()) {
// 记录号
i++;
// 依据列名获取各列值
for (int j = 1; j<=columnSize; j++){
String value = resultSet.getString(j);
//创建列
stringBuffer.append(value);
if (j != columnSize){
stringBuffer.append(Constant.COMMA);
}
}
String buffer_string = stringBuffer.toString();
String[] content = buffer_string.split(Constant.COMMA);
csvWriter.writeRecord(content);
stringBuffer.setLength(0);
}
// 文件输出
csvWriter.flush();
csvWriter.close();
针对相同文件导出csv结果如下:
3.2导出xlsx
使用的依赖库:
<!-- https://mvnrepository.com/artifact/org.apache.poi/poi -->
<dependency>
<groupId>org.apache.poi</groupId>
<artifactId>poi</artifactId>
<version>3.15</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.poi/poi-ooxml -->
<dependency>
<groupId>org.apache.poi</groupId>
<artifactId>poi-ooxml</artifactId>
<version>3.15</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.xmlbeans/xmlbeans -->
<dependency>
<groupId>org.apache.xmlbeans</groupId>
<artifactId>xmlbeans</artifactId>
<version>2.6.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.poi/poi-ooxml-schemas -->
<dependency>
<groupId>org.apache.poi</groupId>
<artifactId>poi-ooxml-schemas</artifactId>
<version>3.14</version>
</dependency>
截取部分代码片段:
// 数据查询开始
preparedStatement = connection.prepareStatement(sql);
resultSet = preparedStatement.executeQuery();
// 获取结果集表头
ResultSetMetaData md = resultSet.getMetaData();
int columnCount = md.getColumnCount();
logger.debug("返回结果字段个数:" + columnCount);
JSONArray columnName = new JSONArray();
for (int i = 1; i <= columnCount; i++) {
JSONObject object = new JSONObject();
object.put(KEY.COLUNM_NAME,md.getColumnName(i));
columnName.add(object);
}
int columnNameSize = columnName.size();
//ExcelUtil.createSXSSFFile(columnName,filePath);
//inputFS = new FileInputStream(tmp);
// 读取工作薄
Workbook wb = new SXSSFWorkbook(500);
// 记录总数
int i = 0;
while (resultSet.next()) {
// 记录号
i++;
// logger.info("i:"+i);
int factor = CalculateUtil.getMultiplyingFactor(i);
int index = i%Constant.XLSX_LENGTH;
// logger.info("index:"+index);
if ( index == 1){
// 创建工作表
sheet = wb.createSheet("sheet"+factor);
// 写表头
ExcelUtil.writeTitle(sheet,columnName);
}
// 创建行
Row row;
if ( index != 0) {
row = sheet.createRow(index);
} else {
row = sheet.createRow(Constant.XLSX_LENGTH);
}
// 依据列名获取各列值
for (int j = 0; j < columnNameSize; j++) {
String value = resultSet.getString(j + 1);
//创建列
Cell cell = row.createCell((short) j);
cell.setCellValue(value);
}
}
// 文件输出
FileOutputStream out = new FileOutputStream(filePath);
wb.write(out);
out.flush();
out.close();
在导出xlsx里面需要补充说明一点的就是SXSSFWorkbook这个对象的使用,如下:
Workbook wb = new SXSSFWorkbook(500);
因为通常咱使用习惯都是利用XSSFWorkbook来创建xlsx,两者明显的区别就是,SXSSFWorkbook可以设定内存数据写入硬盘的阈值,即每提交多少条数据就写入一次硬盘,有效的避免了大数据量存储时内存溢出的风险。比如代码中我指定的阈值为500条。
有关SXSSFWorkbook对象的详细说明可以参考以下内容:
从上图中可以看出,SXSSF是对XSSF的扩展,用来应对大容量电子表格的输出,自3.8-beta3版本的poi库就添加了。
针对相同文件导出excel结果如下:
补充说明:
excel存储容量,2010版后支持单张sheet表格最大行数1048576,sheet表最大数目没有统一说法,但有一点可以肯定,数据量大太加上自己电脑的性能的限制,excel整体性能会受影响,不是说无限制往里存。
4.总结
csv与excel数据存储能力及效率对比:
属性 | csv | excel |
---|---|---|
存储容量 | 没有限制,类似txt文本 | 单张sheet表有限制,可以存大量sheet表 |
存储效率 | 高 | 相对csv慢 |
占用空间 | 相同内容,少量时占用空间少,大量时占用空间大 | 相同内容,少量占用空间大,大量占用空间少 |
其中相同文件名均代表同一SQL输出不同格式的文件,从下图中可以看出,相同的查询结果,如果内容较少(几十KB),存放在csv文件中占用空间较少。如果内容较大(几百KB),存放在excel文件中占用空间较少,这个应该是excel文件在大容量时做了性能优化。毕竟MicroSoft是靠系统和办公软件起家,其excel还是具备含金量的,不仅仅是好看,在高级层面还是做了不少工作的。
输出csv及excel文件结果对比图:
5.交流
最近有同学说需要完整的代码,限于公司规定,完整代码不能提供。但是如果有同学在实际操作过程中碰到问题、不理解之处都可以通过留言指出来,看看可否协助你分析下。
6.工具类
样例代码中包含以下工具类,有不清楚的请留言。
CalculateUtil .java
import com.amap.axf.data.batch.constant.Constant;
/**
* Created by loongshawn on 2016/12/7.
*
* NOTE 计算指定数字所属区间段
*/
public class CalculateUtil {
public static int getMultiplyingFactor(int num){
int factor = 1;
for (int i=1;i<= Constant.MAX_PAGE;i++){
int tmp = num - (i*Constant.XLSX_LENGTH);
if (tmp <= 0){
factor = i;
break;
}
}
return factor;
}
}
ListUtil .java
import com.alibaba.fastjson.JSONArray;
import com.alibaba.fastjson.JSONObject;
import com.amap.axf.data.batch.constant.Constant;
import com.amap.axf.data.batch.constant.KEY;
import java.util.List;
/**
* Created by loongshawn on 2016/11/29.
*
* NOTE 排序
*/
public class ListUtil {
// 顺序排序
public static List<Integer> getSortedList(List<Integer> list){
int size = list.size();
for (int i=0;i<size;i++){
for (int j=i;j<size;j++){
Integer item_i = list.get(i);
Integer item_j = list.get(j);
if (item_i.intValue() > item_j.intValue()){
list.set(i,item_j);
list.set(j,item_i);
}
}
}
return list;
}
public static String[] getListFromJSONArray(JSONArray jsonArray){
// 获取表头数组
int columnSize = jsonArray.size();
StringBuffer tmp_column = new StringBuffer();
for (int m=0;m<columnSize;m++){
// 获取JSONObject
JSONObject jsonCloumn = jsonArray.getJSONObject(m);
String title_name = jsonCloumn.getString(KEY.COLUNM_NAME);
tmp_column.append(title_name);
if (m != columnSize-1){
tmp_column.append(Constant.COMMA);
}
}
String[] columnNameList = tmp_column.toString().split(Constant.COMMA);
return columnNameList;
}
public static String getStringFromJSONArray(JSONArray jsonArray){
// 获取表头数组
int columnSize = jsonArray.size();
StringBuffer tmp_column = new StringBuffer();
for (int m=0;m<columnSize;m++){
// 获取JSONObject
JSONObject jsonCloumn = jsonArray.getJSONObject(m);
String title_name = jsonCloumn.getString(KEY.COLUNM_NAME);
tmp_column.append(title_name);
if (m != columnSize-1){
tmp_column.append(Constant.TAB);
}
}
return tmp_column.toString();
}
}