对于二叉树的任意两个不同的叶子节点 A、B,一个重要的性质是:它们之间有且仅有一条最短路径。设两个叶子节点的最近公共祖先为 P,则最短路径的长度,等于 A 到 P 的距离,加上 B 到 P 的距离。
于是,我们遍历所有非叶子节点 P,找到以 P 为最近公共祖先的所有叶子节点对,并根据上面的等式,计算每一对之间的距离,并统计距离不超过 distance 的节点对数目,就能够得到最终的答案。
那么怎么计算每个叶子节点对之间的距离呢?关键是要知道:以 P 为根节点的子树中的所有叶子节点,它们与 P 之间的距离。于是,对于任意的节点 P,我们先通过递归的方式,统计叶子节点与 P 的左孩子 left、右孩子 right 之间的距离;这样,两个以 P 为最近公共祖先的叶子节点 A、B,其中一个(例如 A)在以 left 为根的子树中,另一个(例如 B)在以 right 为根的子树中。A 与 B 之间的距离,就等于 A 与 left 之间的距离,加上 B 与 right 之间的距离,再加上 2。
由于本题中约束 distance≤10,因此对于每个非叶子节点 P,只需开辟长度为 distance+1 的数组 depths,其中 depths[i] 表示与 P 之间的距离为 i 的叶子节点数目。
给二叉树的根节点 root 和一个整数 distance 。
如果二叉树中两个 叶 节点之间的 最短路径长度 小于或者等于 distance ,那它们就可以构成一组 好叶子节点对 。
返回树中 好叶子节点对的数量 。
示例 1:
输入:root = [1,2,3,null,4], distance = 3
输出:1
解释:树的叶节点是 3 和 4 ,它们之间的最短路径的长度是 3 。这是唯一的好叶子节点对。
示例 2:
输入:root = [1,2,3,4,5,6,7], distance = 3
输出:2
解释:好叶子节点对为 [4,5] 和 [6,7] ,最短路径长度都是 2 。但是叶子节点对 [4,6] 不满足要求,因为它们之间的最短路径长度为 4 。
示例 3:
输入:root = [7,1,4,6,null,5,3,null,null,null,null,null,2], distance = 3
输出:1
解释:唯一的好叶子节点对是 [2,5] 。
示例 4:
输入:root = [100], distance = 1
输出:0
示例 5:
输入:root = [1,1,1], distance = 2
输出:1
提示:
tree 的节点数在 [1, 2^10] 范围内。
每个节点的值都在 [1, 100] 之间。
1 <= distance <= 10
package com.loo;
public class CountLeafPairs {
public static void main(String[] args) {
TreeNode root = new TreeNode(1);
TreeNode left1 = new TreeNode(2);
TreeNode right1 = new TreeNode(3);
TreeNode left2 = new TreeNode(4);
root.left = left1;
root.right = right1;
left1.right = left2;
int distance = 3;
System.out.println(getCountLeafPairs(root , distance));
}
public static int getCountLeafPairs(TreeNode root , int distance) {
Pairs p = dfs(root , distance);
return p.count;
}
public static Pairs dfs(TreeNode root , int distance) {
int[] depths = new int[distance+1];
boolean isLeaf = root.left == null && root.right == null;
if (isLeaf) {
depths[0] = 1;
return new Pairs(depths , 0);
}
int[] leftDepths = new int[distance+1];
int[] rightDepths = new int[distance+1];
int leftCount = 0;
int rightCount = 0;
if (root.left!=null) {
Pairs leftPairs = dfs(root.left , distance);
leftDepths = leftPairs.depth;
leftCount = leftPairs.count;
}
if (root.right!=null) {
Pairs rightPairs = dfs(root.right , distance);
rightDepths = rightPairs.depth;
rightCount = rightPairs.count;
}
for (int i=0;i<distance;i++) {
depths[i+1] += leftDepths[i];
depths[i+1] += rightDepths[i];
}
int count = 0;
for (int i=0;i<=distance;i++) {
for (int j=0;j+i+2<=distance;j++) {
count += leftDepths[i] * rightDepths[j];
}
}
return new Pairs(depths , count + leftCount + rightCount);
}
static class TreeNode {
int value;
TreeNode left;
TreeNode right;
TreeNode(int v) {
value = v;
}
}
static class Pairs {
int[] depth;
int count;
Pairs(int[] dep , int c) {
depth = dep;
count = c;
}
}
}