
数学
Lopka
大一新生 真.萌新
大四新生 还是萌新
现在工作 依然萌新
展开
-
exgcd 拓展欧几里得
拓展欧几里得 首先我们要知道一个结论: 裴蜀定理(或贝祖定理) 存在整数x,y 使得ax+by=gcd(a,b) 成立 推导 建议拿着笔一起做推导,我们知道欧几里得算法,即辗转相除法,核心公式为gcd(a,b)=gcd(b,a%b),我们就推导出拓展欧几里得。 ax1+by1=gcd(a,b)=gcd(b,a%b)=b*x2+(a%b)*y2 这样我们就得到了状态转移方程? 其中a%b可以写成a-((a/b)*b),我们就得到了最终的状态转移方程,同时因为采取了递归的写法,我们会由2状态推出1状态,原创 2020-11-13 00:34:20 · 264 阅读 · 1 评论 -
把矩阵化成行最简型(伪)
三种初等行变换 因为最后显示出来矩阵行还是乱的(雾 所以是伪 但是俺觉得已经不影响使用了呢(笑 输入: 行数 列数 矩阵 #include<iostream> #include<algorithm> using namespace std; double mt[100][100]; int n,m; void num_multiply_line(int a,double x) { for(int j=0;j<m;j++) mt[a][j]*=x; return ; }原创 2020-10-16 19:50:33 · 1215 阅读 · 1 评论 -
线性代数矩阵计算
无脑bfs搞全排列 #include<iostream> using namespace std; int n; int box[20]; int vis[20]; int s[20][20]; int res; int check() { int cnt=0; for(int i=1;i<n;i++) for(int j=0;j<i;j++) if(box[i]<box[j]) cnt++; return cnt; } void bfs(int ste原创 2020-09-09 20:29:10 · 286 阅读 · 0 评论 -
蓝桥杯 试题 历届试题 买不到的数目
可怕的数论题 这个数的表达式是z=ax+by 其中ab由题目给出 这个最大的不能得到的数是a*b-a-b 证明就不写了,反证法看起来挺好理解的 #include<iostream> using namespace std; int main() { int a,b; cin>>a>>b; cout<<a*b-a-b<<endl; } ...原创 2020-09-01 21:43:04 · 169 阅读 · 1 评论