自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

机器学习杂货铺1号店

机器学习小杂事儿

  • 博客(5)
  • 收藏
  • 关注

原创 曲线拟合问题与L2正则

曲线拟合问题与L2正则前言我们在[1]中曾经谈到了在贝叶斯理论下指导的曲线拟合问题以及基于此的L2正则化解释,其实,对于L2正则化还可以从模型复杂度的角度进行解释,现在,我们针对非贝叶斯观点的曲线拟合问题和L2正则进行讨论。如有谬误,请联系指正。转载请注明出处。联系方式:e-mail: FesianXu@163.comQQ: 973926198github: https://gith...

2018-09-23 21:15:40 1354

原创 贝叶斯曲线拟合

贝叶斯曲线拟合以及对L2正则化的贝叶斯解释前言在以前文章中,我们讨论过《概率学派和贝叶斯学派的区别》和《 <机器学习系列> 线性回归模型》,这里我们讨论下曲线拟合问题中的数据点的噪声问题,以及根据贝叶斯理论的L2正则化解释。如有谬误,请联系指正。转载请注明出处。联系方式:e-mail: FesianXu@163.comQQ: 973926198github: https:...

2018-09-23 15:54:34 6103 2

原创 贝叶斯之旅||第二讲,分类问题的两大过程,推理和决策

贝叶斯之旅||第二讲,分类问题的两大过程,推理和决策前言前面[1]我们介绍了贝叶斯决策的一些知识,介绍了基于最小化分类错误率和最小化分类损失的两种决策准则,接下来,我们简单讨论下分类问题中的二个步骤,推理和决策。如有谬误,请联系指正。转载请注明出处。联系方式:e-mail: FesianXu@163.comQQ: 973926198github: https://github.com...

2018-09-20 16:25:59 1091 3

原创 生成模型和判别模型的区别

前言** 机器学习中有两种大类的模型,分别是生成模型和判别模型,其分别代表了不同的预测思想,我们这里讨论一下两者的异同。**如有谬误,请联系指正。转载请注明出处。联系方式:e-mail: FesianXu@163.comQQ: 973926198github: https://github.com/FesianXu机器学习的目标首先,我们先要讨论整个机器学习的目标,在应用中最常见...

2018-09-20 14:05:28 1711

原创 贝叶斯之旅||第一讲,贝叶斯决策

贝叶斯之旅||第一讲,贝叶斯决策前言在机器学习中,有两大门派,分别是频率学派和贝叶斯学派,在现在深度学习大行其道的时代下,数据量空前庞大,频率学派占据了比较大的优势,而贝叶斯学派似乎有点没落,然而,贝叶斯理论在机器学习中是有着很重要的地位的,它从理论上揭示了模型为什么可以工作,为什么会fail,在数据量必须小的一些任务中,通常也可以表现得比频率学派的好,让我们开始我们的贝叶斯之旅吧。这一讲,主...

2018-09-20 00:47:52 949

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除