这一题主要的问题是,如何判断一个时间是可以让所有的村庄都互通的。我们可以知道的是,这样的时间一定是修复某个桥的时间,最多也就是花费时间最长的那个,因为我们是可以同时修补所有的桥的。我们可以使用结构体数组记录这三个数据,然后按照时间从小到大给他们排序,那么第一个满足所有村庄互通的时间就是所谓”最早时间”。
那么怎么判断那个时间是可以让所有村庄互通的呢?我们设一个循环,每次循环在结构体数组中取出此道路修补需要的时间,然后再设一个循环,此循环中,我们开始建树,并且以上一个循环中取出的时间为时间限制,修补不超出此时间的道路,最后我们看看是否所有村庄都已经在同一个“根节点”之下,如果是的话,就代表此时间是题目所求时间,输出它,然后结束程序,如果它们还不在同一个根节点下,就继续把时间往下推。
如果时间已经是最长时间还是有某些点不在“并查集”中,就输出-1。
代码如下:
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
int pre[100010];
int fini(int x)
{
if(pre[x]==x)
return x;
return pre[x]=fini(pre[x]);
}
struct roa{
int x,y,t;
}r[100010];//使用结构体存储连接的村庄和修复时间
int cmp(struct roa x,struct roa y)//sort辅助函数
{
return x.t<y.t;
}//将结构体按t时间排序
int main()
{
int n,m,cnt=0;
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
pre[i]=i;
for(int i=1;i<=m;i++)
scanf("%d %d %d",&r[i].x,&r[i].y,&r[i].t);
sort(r+1,r+m+1,cmp);
for(int i=1;i<=m;i++)
{
cnt=0;
pre[fini(r[i].y)]=fini(r[i].x);//每到一个时间就给它合并,反正已知最少的时间是不可能
//将所有路修完,我们就从少的时间的路开始修,一个一个的修
//直到某个时间(因为已经从小至大排过序)可以把所有的村庄合并在同一个树中
//若直到最长时间也没能全部统一,这代表着就算所有路都修好也会有村庄不能联通,
//所以我们在最后输出-1
for(int i=1;i<=n;i++)
if(pre[i]==i)
cnt++;//测试是否已经全部统一一个树
if(cnt>=2)//当统一至一个树中后,一定会是只有一个根节点,若不是,则代表未全部统一
continue;
else {//如果已经全部统一,则输出当前road的修复时间
printf("%d",r[i].t);
return 0;
}
}
printf("-1");
}