机器语言
胡桓
顶级测试工程师
展开
-
最小二乘通俗解释
作者:Jacky Yang链接:https://www.zhihu.com/question/36324957/answer/255970074来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。1.线性最小二乘法大家可以随意搜索一下,相关的文章很多。长篇大论的不少,刚入门的朋友一看到那些公式可能就看不下去了。比如下面的解释:毫无疑问,这样的解释...转载 2020-03-10 10:13:24 · 388 阅读 · 0 评论 -
机器学习-10(最优决策树算法的实际展示)
网上一大堆的文章,但是他们的介绍并没有实际上说明为什么使用最优决策树,决策树到底是什么玩意我这里也不做类似的白话文解释了,直接附图来详细生动的例子给大家演示whyOK,现在我们先以是否浮出水面来分类最终结果如图ok,经过我们层层的决策,结果如图最后结果是[1,1],[1,1]为鱼类,[1,0],[0,1],[0,1]为非鱼类,而其实我们在第一次判别是否浮出水面的时...原创 2018-11-16 13:34:53 · 1009 阅读 · 0 评论 -
机器学习-9(信息熵的简单介绍)
这一节介绍一下信息熵,这个跟热力学的熵是有区别的,所以现在让我们忘记热力学第二定律,我们不需要去联想。在这里我将按0基础的思维来讨论信息熵到底是什么我们先把基础公式摘出来 H(X)=−∑xεXP(x)logP(x))看公式,我们已经能感受到了,这是离散型的,每个特征值是独立的。在计算机里面,我们就以0,1来表示是,否。这将牵扯到后面的决策树算法的介绍,每一次yes和no的回答都是为了把数据...原创 2018-11-12 13:18:12 · 528 阅读 · 0 评论 -
机器学习-8(单调函数)
这里为什么讲单调函数呢?因为我们马上要去学习决策树算法了。如果直接就去讲该算法,我估计很多新手会蒙圈,所以我们先在这里补习一下数学知识 单调函数的定义还是很简单的,x1>x2,如果在一个区间内都保持f(x1)>f(x2)或者f(x1)<f(x2),那我们就说在此区间他是属于单调函数了现在我们继续延伸知识,讲讲决策树吧,我就按照我的理解来通俗的说了。决策树就是不停的按照...原创 2018-11-07 10:46:33 · 1162 阅读 · 0 评论 -
机器学习-7(实战演练k-近邻算法)
首先,这里不讨论你如何获取数据,我们假设这些都已存在我们的库里面了,并已经建立好了正确的分类了。这里我直接截图我的实验库吧:现在我们的任务就是随便输入一个经纬度,来看看它属于哪一个国家先来把我们的读取任务搞定吧OK,初步清洗完成,把标签国家拿出来了,经纬度拿出来了先来拿10%来做测试样本吧错误率58,等于只对了42个,无法接受啊!我们继续来用归一的思想来计算一次...原创 2018-11-05 10:43:47 · 176 阅读 · 0 评论 -
机器学习-6(归一化数值计算介绍)
特征值太多了,但是每个特征值有大有小,你怎么去权衡50KG重和臂长1M以及投篮命中率百分之30呢?这个时候就需要我们去加一个系数了,这个特别像权重,你要保证的就是:x0+x1+x2+.....+xn=md1*x0+d2*x1+.....+dn*xn=1即 x0/m+x1/m+x2/m+....xn/m=1即每个数乘以1/m,这个d1,d2,....dn就被我们非常完美的...原创 2018-11-01 11:35:36 · 890 阅读 · 0 评论 -
机器学习-4(k-进邻算法简介中)
既然要介绍该算法,我们就简单介绍一下欧式距离这个应该是我们初中就学过的了,2点之间的距离就是它的多维空间里面每个维度的坐标的差的平方之和,再开方公式就是OK,我们现在按照分类的基本原则,把所有的样本集都放进我们的坐标系里面来,有多少特征,我们就建立几维的空间坐标系。这里的几维就对应上面的x1,x2....xn以及y1,y2......yn所确定的点然后通过计算直线距离,来进...原创 2018-10-24 20:11:25 · 221 阅读 · 0 评论 -
机器学习-5(k-进邻算法简介下)
这里我就直接撸代码了,因为我看了下源码,感觉没啥好讲的,只要有numpy的基础知识,看懂下面这段代码就应该没有什么问题原创 2018-10-29 09:46:53 · 219 阅读 · 0 评论 -
机器学习-2(机器学习程序的步骤)
1 收集数据 这一块你要的知识是如何获得数据 如果不是自己的生产环境产生的真实数据,你还需要获得爬虫的技能,来从外部获取数据到自己的分析库。 2 准备输入数据 这一块可以理解为数据转换,把数据格式转换为符合自己的。不近要匹配你的编程语言的习惯,而且要做到简化。还有一点就是还要匹配某些算法对数据格式的要求。这里就不细讲,到了相关知识点我相信大家都一目了然了 3 ...原创 2018-10-17 17:07:39 · 752 阅读 · 0 评论 -
机器学习-1(基础概念介绍)
首先我们要明白一点,什么是机器学习?我现在的理解就是数据,以及数据背后能够被我们挖掘的含义。我们能利用这些数据去做些什么 机器学习的主要任务就是分类为了测试机器学习算法的效果,通常使用两套独立的样本集:训练数据和测试数据当机器学习程序开始运行时,使用训练样本集作为算法的输入,训练完成之后输入测试样本。输入测试样本时并不提供测试样本的目标变量,由程序决定样本属于哪个类别。比...原创 2018-10-17 16:26:21 · 263 阅读 · 0 评论 -
机器学习-3(k-进邻算法简介)
先简单介绍一下k-进邻算法:采用测量不同特征值之间的距离方法进行分类,OK,它是属于监督学习了优点:精度高,对异常值不敏感,无数据输入假定缺点:计算复杂度高,空间复杂度高适用数据范围:数值型和标称型在介绍这个算法之前,先介绍一点基础的数学概念,这个是会在后面用到的,我这里就尽量用白话给大家介绍矩阵:你可以理解为一个二维数组,里面可能有实数和复数。如下图单位矩阵 ...原创 2018-10-18 13:12:12 · 373 阅读 · 0 评论