能上图的时候,先直观上图解释。
1.数据清洗:消除噪声和删除不一致数据。
2.数据集成:多种类数据源组合在一起。
3.数据选择:从数据库中提取与分析任务相关的数据。
4.数据变换:通过汇总和聚集操作,把数据变换和统一成适合挖掘的过程。
5.数据挖掘:使用智能方法提取数据。
6.模式评估:根据兴趣度量,识别带有模式的模式。
7.知识表示:可视化及知识表示技术,将挖掘出的数据提供给用户。
能上图的时候,先直观上图解释。
1.数据清洗:消除噪声和删除不一致数据。
2.数据集成:多种类数据源组合在一起。
3.数据选择:从数据库中提取与分析任务相关的数据。
4.数据变换:通过汇总和聚集操作,把数据变换和统一成适合挖掘的过程。
5.数据挖掘:使用智能方法提取数据。
6.模式评估:根据兴趣度量,识别带有模式的模式。
7.知识表示:可视化及知识表示技术,将挖掘出的数据提供给用户。