正态分布和两个重要的函数
-
设随机变量 X 1 , X 2 \bm{X}_1, \bm{X}_2 X1,X2 独立,且分别服从正态分布 N ( μ 1 , σ 1 2 ) \bm{N}(\mu_1, \sigma_1^2) N(μ1,σ12) 和 N ( μ 2 , σ 2 2 ) \bm{N}(\mu_2, \sigma_2^2) N(μ2,σ22),则随机变量 Y = X 1 + X 2 \bm{Y} = \bm{X}_1 + \bm{X}_2 Y=X1+X2 服从正态分布 N ( μ 1 + μ 2 , σ 1 2 + σ 2 2 ) \bm{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2) N(μ1+μ2,σ12+σ22),这被称为正态分布的“再生性”
- 再生性可以直接推广到 n n n 个服从正态分布的独立随机变量的情形
-
如果随机变量 X 1 , X 2 \bm{X}_1, \bm{X}_2 X1,X2 不独立,但其联合分布为二维正态分布 N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) \bm{N}(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho) N(μ1,μ2,σ12,σ22,ρ),则随机变量 Y = X 1 + X 2 \bm{Y} = \bm{X}_1 + \bm{X}_2 Y=X1+X2 服从正态分布 N ( μ 1 + μ 2 , σ 1 2 + σ 2 2 ) + 2 ρ σ 1 σ 2 \bm{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2) + 2\rho\sigma_1\sigma_2 N(μ1+μ2,σ12+σ22)+2ρσ1σ2
Γ \Gamma Γ 函数
Γ
(
x
)
=
∫
0
∞
e
−
t
t
x
−
1
d
t
,
x
>
0
\Gamma(x) = \int _{ 0 }^{ \infty }{e^{-t}t^{x-1}\rm{d}t}, \quad x > 0
Γ(x)=∫0∞e−ttx−1dt,x>0
Γ
(
1
)
=
1
,
Γ
(
1
2
)
=
π
,
Γ
(
n
)
=
(
n
−
1
)
!
\Gamma(1) = 1, \quad \Gamma(\frac { 1 }{ 2 } ) = \sqrt { \pi }, \quad \Gamma(n) = (n-1)!
Γ(1)=1,Γ(21)=π,Γ(n)=(n−1)!
Γ
(
x
+
1
)
=
x
Γ
(
x
)
\Gamma(x+1) = x\Gamma(x)
Γ(x+1)=xΓ(x)
B \Beta B 函数
B
(
x
,
y
)
=
∫
0
1
t
x
−
1
(
1
−
t
)
y
−
1
d
t
,
x
>
0
,
y
>
0
\Beta(x, y) = \int _{ 0 }^{1}{t^{x-1}(1-t)^{y-1}\rm{d}t}, \quad x > 0, y > 0
B(x,y)=∫01tx−1(1−t)y−1dt,x>0,y>0
B
(
x
,
y
)
=
Γ
(
x
)
Γ
(
y
)
Γ
(
x
+
y
)
\Beta(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
B(x,y)=Γ(x+y)Γ(x)Γ(y)
1. 卡方分布
- 设随机变量 X 1 , X 2 , . . . , X n \bm{X}_1, \bm{X}_2, ..., \bm{X}_n X1,X2,...,Xn 独立,且都服从正态分布 N ( 0 , 1 ) \bm{N}(0, 1) N(0,1),则随机变量 Y = X 1 2 + X 2 2 + . . . + X n 2 \bm{Y} = \bm{X}_1^2 + \bm{X}_2^2 + ... + \bm{X}_n^2 Y=X12+X22+...+Xn2 服从自由度 n n n 的卡方分布
χ n 2 ( x ) = e − x 2 x n − 2 2 Γ ( n 2 ) 2 n 2 , x > 0 { \chi }_{ n }^{ 2 }(x)=\frac { { e }^{ -\frac { x }{ 2 } }{ x }^{ \frac { n-2 }{ 2 } } }{ \Gamma \left( \frac { n }{ 2 } \right) { 2 }^{ \frac { n }{ 2 } } }, \quad x > 0 χn2(x)=Γ(2n)22ne−2xx2n−2,x>0
卡方分布的性质
-
设随机变量 X 1 , X 2 \bm{X}_1, \bm{X}_2 X1,X2 独立,且分别服从卡方分布 χ m 2 { \chi }_{ m }^{ 2 } χm2 和 χ n 2 { \chi }_{ n }^{ 2 } χn2,则随机变量 Y = X 1 + X 2 \bm{Y} = \bm{X}_1 + \bm{X}_2 Y=X1+X2 服从卡方分布 χ m + n 2 { \chi }_{ m+n }^{ 2 } χm+n2
-
卡方分布的期望
E ( Y ) = n E(\bm{Y}) = n E(Y)=n -
卡方分布的方差
V a r ( Y ) = 2 n Var(\bm{Y}) = 2n Var(Y)=2n
2. t t t 分布
- 设随机变量 X 1 , X 2 \bm{X}_1, \bm{X}_2 X1,X2 独立,且分别服从卡方分布 χ n 2 { \chi }_{ n }^{ 2 } χn2 和正态分布 N ( 0 , 1 ) \bm{N}(0, 1) N(0,1),则随机变量 Y = X 2 / X 1 n \bm{Y} = { { X }_{ 2 } }/{ \sqrt { \frac { { X }_{ 1 } }{ n } } } Y=X2/nX1 服从自由度 n n n 的 t t t 分布
t n ( y ) = Γ ( n + 1 2 ) n π Γ ( n 2 ) ( 1 + y 2 n ) − n + 1 2 t_n(y) = \frac { \Gamma \left( \frac { n+1 }{ 2 } \right) }{ \sqrt { n\pi } \Gamma \left( \frac { n }{ 2 } \right) } { \left( 1+\frac { { y }^{ 2 } }{ n } \right) }^{ -\frac { n+1 }{ 2 } } tn(y)=nπΓ(2n)Γ(2n+1)(1+ny2)−2n+1
t t t 分布的性质
- t t t 分布关于原点对称,其图形与正态分布 N ( 0 , 1 ) \bm{N}(0, 1) N(0,1) 相似,当 n n n 很大时, t t t 分布接近标准正态分布
- t t t 分布的期望
E ( Y ) = 0 E(\bm{Y}) = 0 E(Y)=0
- t t t 分布的方差
V a r ( Y ) = n n − 2 , n > 2 Var(\bm{Y}) = \frac{n}{n-2}, \quad n > 2 Var(Y)=n−2n,n>2
3. F \bm{F} F 分布
- 设随机变量 X 1 , X 2 \bm{X}_1, \bm{X}_2 X1,X2 独立,且分别服从卡方分布 χ n 2 { \chi }_{ n }^{ 2 } χn2 和 χ m 2 { \chi }_{ m }^{ 2 } χm2,则随机变量 Y = m − 1 X 2 n − 1 X 1 Y=\frac { { m }^{ -1 }{ X }_{ 2 } }{ { n }^{ -1 }{ X }_{ 1 } } Y=n−1X1m−1X2 服从自由度 ( m , n ) (m, n) (m,n) 的 F \bm{F} F 分布
f m n ( y ) = m m 2 n n 2 Γ ( m + n 2 ) Γ ( m 2 ) Γ ( n 2 ) y m 2 − 1 ( m y + n ) − m + n 2 , y > 0 f_{mn}(y)={ m }^{ \frac { m }{ 2 } }{ n }^{ \frac { n }{ 2 } }\frac { \Gamma \left( \frac { m+n }{ 2 } \right) }{ \Gamma \left( \frac { m }{ 2 } \right) \Gamma \left( \frac { n }{ 2 } \right) } { y }^{ \frac { m }{ 2 } -1 }{ \left( my+n \right) }^{ -\frac { m+n }{ 2 } }, \quad y > 0 fmn(y)=m2mn2nΓ(2m)Γ(2n)Γ(2m+n)y2m−1(my+n)−2m+n,y>0
F \bm{F} F 分布的性质
-
F \bm{F} F 分布的期望
E ( Y ) = n n − 2 , n > 2 E(\bm{Y}) = \frac{n}{n-2}, \quad n > 2 E(Y)=n−2n,n>2 -
F \bm{F} F 分布的方差
V a r ( Y ) = 2 n 2 ( m + n − 2 ) m ( n − 2 ) 2 ( n − 4 ) , n > 4 Var(\bm{Y}) = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}, \quad n > 4 Var(Y)=m(n−2)2(n−4)2n2(m+n−2),n>4