头歌题目
第1关:栈的应用 - 计算中缀表达式
任务描述
本关任务要求通过实现函数double ComputeInfix(char* s)
来计算中缀表达式。
相关知识
中缀表达式的计算需要用到栈。关于链接存储的栈,其中已实现了如下操作:
-
创建栈:创建一个链式栈。具体操作函数定义如下:
LinkStack* LS_Create()
; -
释放栈:释放栈所占用的空间。具体操作函数定义如下:
void LS_Free(LinkStack* ls)
; -
清空一个栈:将链式栈变为空栈。具体操作函数定义如下:
void LS_MakeEmpty(LinkStack* ls)
; -
判断栈是否为空:若栈为空,则返回
true
,否则返回false
。具体操作函数定义如下:bool LS_IsEmpty(LinkStack* ls)
; -
求栈的长度:获取链式栈的长度。具体操作函数定义如下:
int LS_Length(LinkStack* ls)
; -
将元素 x 进栈:将 x 进栈,若满栈则无法进栈,返回
false
,否则返回true
。具体操作函数定义如下:void LS_Push(LinkStack* ls, T x)
; -
出栈:出栈的元素放入
item
。若出栈成功(栈不为空),则返回true
;否则(空栈),返回false
。具体操作函数定义如下:bool LS_Pop(LinkStack* ls, T& item)
; -
获取栈顶元素:获取栈顶元素放入
item
中。若获取失败(空栈),则返回false
,否则返回true
。具体操作函数定义如下:bool LS_Top(LinkStack* ls, T& item)
; -
打印栈中元素:从栈顶到栈底打印各结点数据元素。具体操作函数定义如下:
void LS_Print(LinkStack* ls)
。
在计算中缀表达式的过程中,你可以根据需要调用以上操作。因为表达式的计算结果可能是浮点数,所以这里将栈的数据元素类型设置为了double
类型。
typedef double T; // 数据元素类型
此外,为了计算中缀表达式,我们定义了如下函数,其中的 1)已经实现,你需要实现 2): 1):
void compute(LinkStack* so, LinkStack* sd);
/*
so为运算符栈
sd为操作数栈
*/
该函数处理步骤:
- 从运算符栈出栈一个运算符;
- 从操作数栈出栈两个操作数;
- 用出栈的运算符对出栈的操作数进行运算;
- 将运算结果进操作数栈。
2):
double ComputeInfix(char* s);
/*
s是中缀表达式符号串,如果表达式是7+8,那么s[0]=’7’,s[1]=’+’,s[2]=’8’。
该函数返回表达式计算结果。
*/
在实现 2)的过程中,可以调用 1)。为了简化你的实现,假设表达式中的操作数都是一个非负的个位数。后面的测试中,输入数据将符合这一要求。
编程要求
本关的编程任务是补全 step1/Infix.cpp 文件中ComputeInfix
函数,以实现计算中缀表达式的功能。具体要求如下:
- 本关任务要求通过实现函数
double ComputeInfix(char* s)
来计算中缀表达式; - 具体请参见后续测试样例。
本关涉及的代码文件 Infix.cpp 的代码框架如下:
#include <stdio.h>
#include <stdlib.h>
#include "LnkStack.h"
#include "infix.h"
//
void compute(LinkStack* so, LinkStack* sd)
//++++++++++++++++++++++++++++++++++++++++++++++
// so 运算符栈
// sd 操作数栈
// 1 从运算符栈出栈一个运算符
// 2 从操作数栈出栈两个操作数
// 3 用出栈的运算符对出栈的操作数进行运算
// 4 将运算结果进操作数栈
//+++++++++++++++++++++++++++++++++++++++++++++++
{
T a,b,c,d;
LS_Pop(so,c);
LS_Pop(sd,a);
LS_Pop(sd,b);
if (c=='*') d=b*a;
else if (c=='/') d=b/a;
else if (c=='+') d=b+a;
else if (c=='-') d=b-a;
else printf("never occur!");
LS_Push(sd, d);
}
double ComputeInfix(char* s)
{
// 请在此添加代码,补全函数ComputeInfix,计算中缀表达式
/********** Begin *********/
/********** End **********/
}
测试说明
本关的测试过程如下:
- 平台编译 step1/Main.cpp ,然后链接相关程序库并生成 exe 可执行文件;
- 平台运行该可执行文件,并以标准输入方式提供测试输入;
- 平台获取该可执行文件的输出,然后将其与预期输出对比,如果一致则测试通过;否则测试失败。
输入输出说明: 输入格式: 输入一个中缀表达式。表达式中的操作数都是一个非负的个位数。 输出格式: 输出该表达式的值。
以下是平台对 step1/Main.cpp 的测试样例:
样例输入: (1+2)*(9-6)
样例输出: result = 9.000000
#include <stdio.h>
#include <stdlib.h>
#include "LnkStack.h"
#include "Infix.h"
void compute(LinkStack* so, LinkStack* sd)
//++++++++++++++++++++++++++++++++++++++++++++++
//so 运算符栈
//sd 操作数栈
//1 从运算符栈出栈一个运算符
//2 从操作数栈出栈两个操作数
//3 用出栈的运算符对出栈的操作数进行运算
//4 将运算结果进操作数栈
//+++++++++++++++++++++++++++++++++++++++++++++++
{
T a,b,c,d;
LS_Pop(so,c);
LS_Pop(sd,a);
LS_Pop(sd,b);
if (c=='*')
{
d=b*a;
}
else if (c=='/')
{
d=b/a;
}
else if (c=='+')
{
d=b+a;
}
else if (c=='-')
{
d=b-a;
}
else
{
printf("never occur!");
}
LS_Push(sd, d);
}
double ComputeInfix(char* s)
//计算中缀表达式
{
int i=0;
LinkStack* so=LS_Create(); // 运算符栈
LinkStack* sd=LS_Create(); //操作数栈
while(s[i])
{
if ('0'<=s[i] && s[i]<='9')
{
LS_Push(sd, s[i++]-48);
continue;
}
if(s[i]=='('||LS_IsEmpty(so))
{
LS_Push(so, s[i++]);
continue;
}
if(s[i]==')')
{
T topitem;
while(LS_Top(so,topitem) && topitem !='(' )
{
compute(so, sd);
}
LS_Pop(so,topitem);
i++;
continue;
}
if(s[i]=='*'||s[i]=='/')
{
T c;
LS_Top(so,c);
if (c=='*' || c=='/')
{
compute(so, sd);
}
LS_Push(so, s[i++]);
continue;
}
if(s[i]=='+'||s[i]=='-')
{
T topitem;
while(LS_Top(so,topitem) && topitem !='(' )
{
compute(so, sd);
}
LS_Push(so, s[i++]);
continue;
}
}
while(!LS_IsEmpty(so))
{
compute(so, sd);
}
T res;
LS_Top(sd,res);
LS_Free(so);
LS_Free(sd);
return res;
}
//——————————————————————————————————————————//
//——————————————————————————————————————————//
//——————————————————————————————————————————//
第2关:栈的应用 - 计算后缀表达式
任务描述
本关任务要求通过实现函数double ComputePostfix(char* s)
来计算后缀表达式。
相关知识
和中缀表达式的计算一样,后缀表达式的计算也需要用到栈。关于链接存储的栈,其中已实现了如下操作:
-
创建栈:创建一个链式栈。具体操作函数定义如下:
LinkStack* LS_Create()
; -
释放栈:释放栈所占用的空间。具体操作函数定义如下:
void LS_Free(LinkStack* ls)
; -
清空一个栈:将链式栈变为空栈。具体操作函数定义如下:
void LS_MakeEmpty(LinkStack* ls)
; -
判断栈是否为空:若栈为空,则返回
true
,否则返回false
。具体操作函数定义如下:bool LS_IsEmpty(LinkStack* ls)
; -
求栈的长度:获取链式栈的长度。具体操作函数定义如下:
int LS_Length(LinkStack* ls)
; -
将元素 x 进栈:将 x 进栈,若满栈则无法进栈,返回
false
,否则返回true
。具体操作函数定义如下:void LS_Push(LinkStack* ls, T x)
; -
出栈:出栈的元素放入
item
。若出栈成功(栈不为空),则返回true
;否则(空栈),返回false
。具体操作函数定义如下:bool LS_Pop(LinkStack* ls, T& item)
; -
获取栈顶元素:获取栈顶元素放入
item
中。若获取失败(空栈),则返回false
,否则返回true
。具体操作函数定义如下:bool LS_Top(LinkStack* ls, T& item)
; -
打印栈中元素:从栈顶到栈底打印各结点数据元素。具体操作函数定义如下:
void LS_Print(LinkStack* ls)
。
在计算后缀表达式的过程中,你可以根据需要调用以上操作。因为表达式的计算结果可能是浮点数,所以这里将栈的数据元素类型设置为了double
类型。
typedef double T; // 数据元素类型
此外,为了计算后缀表达式,我们定义了如下函数,这个函数需要你来实现:
double ComputePostfix(char* s);
/*
s是后缀表达式符号串,如果表达式是7 8 +,那么s[0]=’7’,s[1]=’8’,s[2]=’+’。
该函数返回表达式计算结果。
*/
为了简化你的实现,假设表达式中的操作数都是一个非负的个位数。后面的测试中,输入数据将符合这一要求。
编程要求
本关的编程任务是补全 step2/Postfix.cpp 文件中ComputePostfix
函数,以实现计算后缀表达式的功能。具体要求如下:
- 本关任务要求通过实现函数
double ComputePostfix(char* s)
来计算后缀表达式; - 具体请参见后续测试样例。
本关涉及的代码文件 Postfix.cpp 的代码框架如下:
#include <stdio.h>
#include <stdlib.h>
#include "LnkStack.h"
#include "postfix.h"
double ComputePostfix(char* s)
{
// 请在此添加代码,补全函数ComputePostfix,计算后缀表达式
/********** Begin *********/
/********** End **********/
}
测试说明
本关的测试过程如下:
- 平台编译 step2/Main.cpp ,然后链接相关程序库并生成 exe 可执行文件;
- 平台运行该可执行文件,并以标准输入方式提供测试输入;
- 平台获取该可执行文件的输出,然后将其与预期输出对比,如果一致则测试通过;否则测试失败。
输入输出说明: 输入格式: 输入一个后缀表达式。表达式中的操作数都是一个非负的个位数。 输出格式: 输出该表达式的值。
以下是平台对 step2/Main.cpp 的测试样例:
样例输入: 12+96-*
样例输出: result = 9.000000
#include <stdio.h>
#include <stdlib.h>
#include "LnkStack.h"
#include "Postfix.h"
double ComputePostfix(char* s)
{
LinkStack* sd=LS_Create();
int i=0;
T k,top1,top2;
while(s[i])
{
switch (s[i])
{
case '+':
LS_Pop(sd,top1);
LS_Pop(sd,top2);
k=top1+top2;
LS_Push(sd,k);
break;
case '-':
LS_Pop(sd,top1);
LS_Pop(sd,top2);
k=top2-top1;
LS_Push(sd,k);
break;
case '*':
LS_Pop(sd,top1);
LS_Pop(sd,top2);
k=top1*top2;
LS_Push(sd,k);
break;
case '/':
LS_Pop(sd,top1);
LS_Pop(sd,top2);
k=top2/top1;
LS_Push(sd,k);
break;
default:
LS_Push(sd, (int)(s[i]-48));
}
i++;
}
T res;
LS_Top(sd,res);
LS_Free(sd);
return res;
}