- 我们之前所学习的二叉搜索树由于可能出现单边树的极端情况,导致效率为O(N)。因此,本文将介绍AVL树即平衡搜索二叉树,将可以有效的避免单边树的情况。
AVL树的实现
AVL树的概念
AVL树是以发现其的两位俄罗斯数学家G.M.Adelson-Velskii和E.M.Landis的首字母命名的。其实现方法为:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
- 它的左右子树都是AVL树
- 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在O(log2N) ,搜索时间复杂度O( log2N)。
AVL树的定义
AVL树结点定义
这里采用三叉链结构定义AVL树结点,即定义一个结点的父亲,左孩子与右孩子。用pair对象存储key、value值,然后定义平衡因子,用于调整AVL树保证平衡稳定性。
template <class K, class V>
struct AVLTreeNode
{
pair<K,V> _kv;
AVLTreeNode<K, V>* _left;
AVLTreeNode<K, V>* _right;
AVLTreeNode<K, V>* _parent;
int _bf;//平衡因子,右子树高度-左子树高度
AVLTreeNode(const pair<K,V>& kv)
:_kv(kv)
,_left(nullptr)
,_right(nullptr)
,_parent(nullptr)
,_bf(0)
{
}
};
AVL树的定义
template <class K, class V>
class AVLTree
{
public:
typedef AVLTreeNode<K, V> Node;
AVLTree()
:_root(nullptr)
{
}
private:
Node* _root;
}
AVL树的插入
AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:
-
- 按照二叉搜索树的方式插入新节点
-
- 调整节点的平衡因子(更新平衡因子加旋转)
AVL树的插入在前半部分与二叉搜索树没有区别就是先找到新结点要插入的位置。
- 调整节点的平衡因子(更新平衡因子加旋转)
更新平衡因子
AVL树的旋转
右单旋
当结点的平衡因子出现异常时,若左子树高度高于右子树高度,那么该结点需要进行右单旋调整。
进行右单旋的条件为:parent的bf为-2且subL的bf为-1。
右单旋代码实现
在此逻辑上,可以得出右单旋的代码:
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
//改变链接关系
parent->_left = subLR;
subL->_right = parent;
if (subLR)//注意subLR可能为空
subLR->_parent = parent;
Node* ppNode = parent->_parent;
//parent为根
if (parent == _root)
_root = subL;
else
{