多目标优化问题中常用的性能度量指标及参数设置——GD及变体、HV及变体、SP及变体

一、时代距离GD及其变体

(一)时代距离GD

GD能够测量一个算法得到的解集的收敛性,GD指标可以通过下列公式计算得到:

GD(POF_t,P_t)=\frac{\sum_{\nu\epsilon{P_t}}d(POF_t,\nu)}{|P_t|}

其中d(POF_t,\nu)=min_{u\epsilon{POF_t}}\sqrt{\sum_{j=1}^{m}(f_j^u-f_j^\nu)^2} 是POF_t上的点到\nu的欧几里得距离。

GD的值越小代表算法的收敛性越好。

(二)逆时代距离IGD

IGD作为多目标优化问题中常用的性能度量指标, 其通过度量算法计算得到的近似Pareto前沿和测试函数的实际Pareto前沿之间的差异来评价算法的性能,也用来评价算法运行出来的解集的收敛性和多样性。

对IGD的定义如下:

IGD(POF^*,POF)=\frac{1}{n}\sum_{p^*\epsilon{POF^*}}min_{p\epsilon{POF}}{\left \| p^*-p\right \|}^2

其中POF^*是给定的多目标优化问题的真实Pareto前沿,POF表示多目标优化算法得到的近似Pareto前沿,n表示中的解的数量。

(三)平均逆时代距离MIGD

MIGD度量是IGD的一个变体, 它定义为给定运行中几个时间步长内的IGD值的平均值:

MIGD(POF^*,POF)=\frac{1}{|T|}\sum_{t\epsilon{T}}IGD({POF^*_t,POF_t})

其中T是运行中的一 离散时间,|T|是T的基数。

较低的IGD值意味着该算法得到的更好的解。 而较低的MIGD值意味着处理DMOP 时算法在快速变化的环境中具有良好的整体性能。
 

二、超体积HV及其变体

(一)超体积HV

HV是一种较为综合的性能指标, 其具有一定的数学理论依据,可用于评估算法获得的种群的多样性和收敛性。 其定义如下:

HV(POF,ref)=\wedge (\cup _{p\epsilon{POF}}\left \{ {p}'|ref\succ {p}'\succ{p} \right \})

其中ref\epsilon{R^M}表示计算HV的参考点,\wedge表示勒贝格测度。

(二)平均超体积MHV

MHV是HV超体积的一 种变体,被定义为运行中所有时间步长中的超体积的平均值:

MHV(POF,ref))=\frac{1}{|T|}\sum_{t\epsilon{T}}HV(POF_t,ref)

HV值越大, 该算法得到的解的质量就越好。 MHV值越大, 处理具有特定动态特性的DMOP时解决方案的质量就越好。

(三)超体积差HVD

—种收敛度量, 其通过计算算法得到的近似POF与真实POF之间的差异得到:

HVD(POF^*_t,POF_t)=|HV(POF^*_t)-HV(POF_t)|

(四)平均超体积差MHVD

平均HVD(MHVD)是HVD的一个变体,MHVD定义在运行期间的某一时间序列上HVD的平均值, 具体如下:

MHVD(POF^*_t,POF_t)=\frac{1}{T}\sum_{t\epsilon{T}}HVD(POF^*_t,POF_t)

其中HV(S)表示集合S的超体积

三、Schott的分布性指标SP

(一)Schott的分布性指标SP

SP这类分布性指标是由Schott开发出来的并用来研究算法求得的解在真实Pareto面上的分布情况,可测量P_t中的个体如何均匀分布在最优Pareto面上的,其可表示为:

SP=\sqrt{\frac{1}{|POF_t|-1}\sum_{\nu \epsilon{POF}}(D(\nu,POF)-\bar{D})^2}

其中\bar{D}D的平均值,D由如下公式计算得到:

D(\nu,P_t)=min_{u\epsilon{P_t}}\sqrt{\sum_{j=1}^m(f_j(\nu)-f_j(u))^2}

(二)Schott的平均分布性指标MSP

MSP也是SP的一个变体版本。SP定义为运行期间某个时间序列中SP的平均值, 公式如下:

MSP=\frac{1}{|T|}\sum_{t\epsilon{T}}SP

四、参数设置

动态多目标优化问题的动态性被定义为t=\left \lfloor {\tau/\tau_t} \right \rfloor/n_t,其中分别表示\tau\tau_tn_t迭代计数器、 环境变化的频率和环境变化的严重程度,\left \lfloor \cdot {} \right \rfloor是一 个向上取整算子。

由该式可知, 较大的\tau_t代表环境变化缓慢,而较大的n_t , 则意味着环境轻微变化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值