一、时代距离GD及其变体
(一)时代距离GD
GD能够测量一个算法得到的解集的收敛性,GD指标可以通过下列公式计算得到:
其中
是
上的点到
的欧几里得距离。
GD的值越小代表算法的收敛性越好。
(二)逆时代距离IGD
IGD作为多目标优化问题中常用的性能度量指标, 其通过度量算法计算得到的近似Pareto前沿和测试函数的实际Pareto前沿之间的差异来评价算法的性能,也用来评价算法运行出来的解集的收敛性和多样性。
对IGD的定义如下:
其中
是给定的多目标优化问题的真实Pareto前沿,POF表示多目标优化算法得到的近似Pareto前沿,n表示中的解的数量。
(三)平均逆时代距离MIGD
MIGD度量是IGD的一个变体, 它定义为给定运行中几个时间步长内的IGD值的平均值:
其中T是运行中的一 离散时间,|T|是T的基数。
较低的IGD值意味着该算法得到的更好的解。 而较低的MIGD值意味着处理DMOP 时算法在快速变化的环境中具有良好的整体性能。
二、超体积HV及其变体
(一)超体积HV
HV是一种较为综合的性能指标, 其具有一定的数学理论依据,可用于评估算法获得的种群的多样性和收敛性。 其定义如下:
其中
表示计算HV的参考点,
表示勒贝格测度。
(二)平均超体积MHV
MHV是HV超体积的一 种变体,被定义为运行中所有时间步长中的超体积的平均值:
HV值越大, 该算法得到的解的质量就越好。 MHV值越大, 处理具有特定动态特性的DMOP时解决方案的质量就越好。
(三)超体积差HVD
—种收敛度量, 其通过计算算法得到的近似POF与真实POF之间的差异得到:
(四)平均超体积差MHVD
平均HVD(MHVD)是HVD的一个变体,MHVD定义在运行期间的某一时间序列上HVD的平均值, 具体如下:
其中
表示集合
的超体积
三、Schott的分布性指标SP
(一)Schott的分布性指标SP
SP这类分布性指标是由Schott开发出来的并用来研究算法求得的解在真实Pareto面上的分布情况,可测量中的个体如何均匀分布在最优Pareto面上的,其可表示为:
其中
是
的平均值,
由如下公式计算得到:
(二)Schott的平均分布性指标MSP
MSP也是SP的一个变体版本。SP定义为运行期间某个时间序列中SP的平均值, 公式如下:
四、参数设置
动态多目标优化问题的动态性被定义为,其中分别表示
,
,
迭代计数器、 环境变化的频率和环境变化的严重程度,
是一 个向上取整算子。
由该式可知, 较大的代表环境变化缓慢,而较大的
, 则意味着环境轻微变化。