jiwer - 语音识别评估

jiwer是一个用于评估自动语音识别系统的Python包,提供WER、MER、WIL、WIP和CER等度量。它依赖RapidFuzz库进行高效计算,支持多种安装方式,并能方便地计算多个句子的词错误率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录


关于 jiwer


JiWER 是一个简单快速的 python包,用于评估自动语音识别系统。它支持以下measures:

  1. word error rate (WER)
  2. match error rate (MER)
  3. word information lost (WIL)
  4. word information preserved (WIP)
  5. character error rate (CER)

这些度量是通过使用一个或多个参考句和假设句之间的最小编辑距离来计算的。

使用 RapidFuzz 计算最小编辑距离,它在后台使用C++,因此比纯python实现更快。

RapidFuzz : https://github.com/maxbachmann/RapidFuzz


安装

方式一:pip

需要 python >= 3.7

pip install jiwer

方式二:poetry

poetry add jiwer

使用

最简单的用例是计算两个字符串之间的 词错误率:

from jiwer import wer

reference = "hello world"
hypothesis = "hello duck"

error = wer(reference, hypothesis) # 0.5

计算多个句子

from jiwer import wer 
ground_truth=["hello world","i like monthy python"]
hypothesis=["hello duck","i like python"]
error=wer(ground_truth,hypothesis)  # 0.3333333333333333

2023-04-04(二)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值