- 博客(145)
- 收藏
- 关注
原创 Sublime Text 3 使用笔记:目录
(一)安装 & 配置编译环境(二)编辑快捷键(三)安装 Package control(四)汉化(五)自定义代码提示
2020-09-22 19:32:16 514 2
原创 《Dreamweaver CS6 完全自学教程》笔记
Dreamweaver CS6 完全自学教程先附上资源链接:链接: https://pan.baidu.com/s/1UX6YWUEGxvL6qq8PoVULhw提取码: 790m主要参考这本书进行学习,但不限于此书,如果用到其他资料会进行注明。文章目录Dreamweaver CS6 完全自学教程第一章:网页制作基础知识1.1 Web概述1.1.1 Web服务的工作原理1.1.2 Web...
2020-09-17 08:22:41 5198
原创 [读论文] Legalbench: A Collaboratively Built Benchmark For Measuring Legal Reasoning In LLMs
LLMs 的兴起及其在法律界的应用引发了一个问题:LLMs 能够执行哪种类型的法律推理?为进一步研究这一问题,我们提出了 Legalbench:一个由协作构建的法律推理基准,涵盖了六种不同类型的法律推理,共162个任务。Legalbench 是通过跨学科过程构建的,在这个过程中,我们收集了由法律专业人士设计和精心制作的任务。由于这些主题专家在构建中起到了主导作用,任务要么测量实际有用的法律推理能力,要么测量律师感兴趣的推理技巧。
2024-08-23 02:31:10 986
原创 OpenCompass 使用 LawBench 评测本地模型教程
OpenCompass 是一个用于评测语言大模型和多模态大模型的算法库,中文文档连接:https://opencompass.readthedocs.io/zh-cn/latest/index.html。
2024-08-08 01:16:17 747
原创 [读论文] DISC-LawLLM: Fine-tuning Large Language Models for Intelligent Legal Services
我们提出了DISC-LawLLM,这是一个利用大型语言模型的智能系统,以提供广泛的法律服务。我们采用法律三段论提示策略,构建中国司法领域的监督微调数据集,并建立具有法律推理能力的 Law LLM。我们通过检索模块增强了 LLM,以增强模型获取和利用外部法律知识的能力。提出了一个综合性法律基准,即 DISC-Law-Eval,用于评估客观和主观因素的智能法律系统。DISC-Law-Eval 的定量和定性结果表明,我们的系统在为不同法律场景中的各种用户提供服务方面是有效的。
2024-07-26 02:31:50 875
原创 [读论文] LawBench: Benchmarking Legal Knowledge of Large Language Models
LLM 在各个方面都表现出了强大的能力。然而,当将它们应用于高度专业化、安全关键的法律领域时,尚不清楚他们拥有多少法律知识以及他们是否能够可靠地执行与法律相关的任务。为了弥补这一差距,文章提出了一个综合性评估基准 LawBench。LawBench 经过精心设计,从三个认知层面对 LLM 的法律能力进行精确评估:(1)法律知识记忆:LLM 是否能够记住所需的法律概念、文章和事实;(2)法律知识理解:LLM 是否理解法律文本中的实体、事件和关系;
2024-07-26 01:53:06 1150
原创 【傻瓜式教程】DreamPlace 的下载安装使用和踩过的坑
DreamPlace 是一款芯片放置工具,用于宏单元(macro)和标准单元(Standard Cell)的放置以及布线,并计算 HPWL、Overlap 等用于衡量芯片性能的参数。
2023-12-08 21:27:18 2251 6
原创 [读论文] On Joint Learning for Solving Placement and Routing in Chip Design
由于 GPU 在加速计算方面的优势和对人类专家的依赖较少,机器学习已成为解决布局和布线问题的新兴工具,这是现代芯片设计流程中的两个关键步骤。它仍处于早期阶段,存在一些基本问题:可扩展性、奖励设计和端到端学习范式等。为了实现端到端放置学习,我们首先提出了一种由 DeepPlace 命名的联合学习方法,通过将强化学习与基于梯度的优化方案相结合,用于宏和标准单元的放置。为了进一步将布局与随后的布线任务连接起来,我们还开发了一种通过强化学习来同时完成宏布局和布线的联合学习方法,称为 DeepPR。
2023-10-29 20:28:12 462
原创 [读论文] Towards Machine Learning for Placement and Routing in Chip Design: a Methodological Overview
在现代芯片设计流程中,放置和布线是两个不可或缺且具有挑战性的 NP-hard 问题。与使用启发式算法或专家精心设计的算法的传统求解器相比,机器学习凭借其数据驱动的性质显示出了广阔的前景,它可以减少对知识和先验的依赖,并且通过其先进的计算范式具有更大的可扩展性 (例如 GPU 加速的深度网络)。本调查首先介绍了基本的布局(Placement)和布线(Routing),并简要介绍了经典的无学习解算器。
2023-10-27 00:36:56 429
原创 无偏方差公式推导
在很多情况下我们无法获取所有的样本,更多时候其实只能获取总样本中的一部分样本,而通过这部分样本算出的和使用总样本计算出的之间肯定存在误差,也就是说这个样本方差是有偏的,因此,我们希望对样本方差进行修正,使样本方差是总体方差的一个无偏估计。
2023-09-06 11:18:05 1698
原创 DBSCAN 算法详解 + 代码实现 + 参数的选择
基于密度的噪声应用空间聚类(DBSCAN)是一种无监督聚类算法,它可以替代KMeans和层次聚类等流行的聚类算法。
2023-07-20 13:22:28 5683 4
原创 点云 K 临近查找算法:kd 树
kd 树是一个二叉树,用于高效的查找某个点的 k 临近点,它的每一个节点记载了 特征坐标,切分轴,指向左右子树的指针。
2023-07-09 12:38:27 414
原创 卡尔曼滤波器详解 + 公式推导 + 手动实现 + cv2 实现
卡尔曼滤波(Kalman filter)是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。卡尔曼滤波会根据各测量量在不同时间下的值,考虑各时间下的联合分布,再产生对未知变数的估计,因此会比只以单一测量量为基础的估计方式要准。卡尔曼滤波适用于,即该系统必须是线性的,而且噪声服从正态分布。更详细一些,噪声通常被建模为一个均值为 0、方差为常数的正态分布,也就是高斯分布。该正态分布的横坐标是随机变量的取值,纵坐标是对应取值的概率密度。
2023-06-22 16:58:10 3285
原创 Linux 文件、目录与磁盘格式
rootsu root用户身份、用户组记录文件:默认情况下,系统账号以及root的相关信息,都记录在文件夹内,个人的密码记录在文件夹内,所有的组名记录在/etc/group文件夹内。
2023-02-25 17:16:02 1080
原创 关于在学习 opengl 时遇到的 bug:在 glBegin 和 glEnd 中间使用 glLineWidth 的问题
关于在 glBegin 和 glEnd 中间使用 glLineWidth 时遇到的问题
2022-11-06 17:47:50 659
原创 Gram 矩阵
n 维欧式空间中任意 k 个向量之间两两的内积所组成的矩阵,称为这 k 个向量的 Gram 矩阵。它通常用于判断向量两两之间的相关关系。
2022-06-12 16:35:16 2574
原创 力扣 875. 爱吃香蕉的珂珂
这是一道披着二分外衣的数学题。通过这道题学会了一个关于精度方面的小技巧:由题意可知,我们如果想算吃 piles[i]piles[i]piles[i] 所用的时间,可以通过 ⌈piles[i]mid⌉\lceil\frac{piles[i]}{mid}\rceil⌈midpiles[i]⌉ 来计算,其中 midmidmid 是二分的时候的中值。但这样在数字很大时会涉及到精度的问题,如 piles[i]=1000000000piles[i]=1000000000piles[i]=1000000000,mid
2022-06-07 22:42:42 182
原创 机器学习 07:PCA 及其 sklearn 源码解读
概述Principal Component Analysis 即主成分分析的主要思想是将 n 维特征映射到 k 维上,这 k 维是全新的正交特征也被称为主成分,是在原有 n 维特征的基础上重新构造出来的 k 维特征。PCA 的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,其中,第一个新坐标轴选择是原始数据中方差最大的方向,第二个新坐标轴选取是与第一个坐标轴正交的平面中使得方差最大的,第三个轴是与第 1,2 个轴正交的平面中方差最大的,依次类推,得到 n 个这样的坐标轴。通过这种方式获得的新的坐标
2022-05-28 15:22:35 1432 2
原创 机器学习 05:非线性支持向量机
文章目录主要思想升维核函数核函数的作用常见的核函数主要思想定理:对于线性不可分的点,一定可以有一个维度使其线性可分。基于此定理,我们可以使用支持向量机解决线性不可分的数据,即把数据集映射到一个高纬度,之后再进行线性分类。升维假设原先的样本点是 x⃗i\vec x_ixi,用 ϕ(x⃗i)\phi(\vec x_i)ϕ(xi) 表示映射到新的特征空间后的新样本点。那么分割超平面可以表示为f(x⃗)=w⃗ϕ(x⃗)+bf(\vec x)=\vec w\phi(\vec x)+bf(x
2022-05-27 14:26:46 327
原创 机器学习 06:SMO 算法
文章目录概述选择变量的启发式方法选择第一个变量选择第二个变量目标函数的优化无约束求极值加入约束更新阈值 b概述SMOSMOSMO 是由 PlattPlattPlatt 在 1998 年提出的、针对软间隔最大化 SVMSVMSVM 对偶问题求解的一个算法,其基本思想很简单:如果所有变量的解都满足此优化问题的 KKT 条件,则这个优化问题的解就得到了;否则在每一步优化中,挑选出诸多参数 αk (k=1,2,⋯ ,n)\alpha_k\ (k=1,2,\cdots,n)αk (k=1,
2022-05-27 14:22:32 1335 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人