一、关于 Mage
Mage 是一个用于转换和集成数据的混合框架。它结合了两种世界的最佳之处:笔记本的灵活性与模块化代码的严谨性。
- github : https://github.com/mage-ai/mage-ai
- 官方文档:<https://docs.mage.ai
- chat : https://www.mage.ai/chat
特点
- 从第三方来源提取和同步数据。
- 使用 Python、SQL 和 R 实时和批量处理数据转换。
- 使用我们预构建的连接器将数据加载到您的数据仓库或数据湖中。
- 运行、监控和编排数千个管道,无需熬夜。
此外,还有数百项企业级功能、基础设施创新和神奇惊喜。
两个令人陶醉的版本可供选择
- Mage Pro
完全托管的数据集成和转换平台。
https://cloud.mage.ai/sign-up - Mage OSS
自托管。用于构建、运行和管理数据管道的系统。
https://github.com/mage-ai/mage-ai?tab=readme-ov-file#its-magic
尝试使用 Mage Pro : https://cloud.mage.ai/sign-up
二、安装💃♀️
推荐的安装最新版本 Mage 的方法是使用 Docker,以下命令:
docker pull mageai/mageai:latest
您还可以使用pip或conda安装Mage,尽管在没有适当环境的情况下,这可能会引起依赖问题。
pip install mage-ai
conda install -c conda-forge mage-ai
正在寻找帮助?最快的方式是查看我们的文档这里。
寻找快速示例?在您的浏览器中打开一个 demo 项目,或查看我们的 指南。
三、Demo 🎮
现场演示
构建并运行我们的数据管道,请使用我们的 演示应用。
警告:在线演示对所有人公开,请勿保存任何敏感信息(例如密码、机密等)。
演示视频(5分钟)
https://www.youtube.com/watch?v=GswOdShLGmg
四、功能 🔮
🎶 | 编排 | 安排和管理数据管道,具有可观察性。 |
📓 | 笔记本 | 用于编写数据管道的交互式 Python、SQL 和 R 编辑器。 |
🏗️ | 数据集成 | 从第三方源同步数据到您的内部目的地。 |
🚰 | 流式管道 | 摄入和转换实时数据。 |
❎ | dbt | 使用 Mage 构建、运行和管理您的 dbt 模型。 |
一个跨越3个文件定义的示例数据管道
1、加载数据
@data_loader
def load_csv_from_file() -> pl.DataFrame:
return pl.read_csv('default_repo/titanic.csv')
2、转换数据
@transformer
def select_columns_from_df(df: pl.DataFrame, *args) -> pl.DataFrame:
return df[['Age', 'Fare', 'Survived']]
3、导出数据
@data_exporter
def export_titanic_data_to_disk(df: pl.DataFrame) -> None:
df.to_csv('default_repo/titanic_transformed.csv')
2025-03-30(六)