一、项目概览
Upsonic是一个专注于可靠性的AI框架,通过验证层、三角架构、验证代理和输出评估系统等高级功能,为组织提供可信的智能体工作流解决方案。
相关资源
- 项目示意图:https://private-user-images.githubusercontent.com/41792982/404283338-10a3a9ca-1f39-410c-ac48-a7365de589d9.png
- SDK服务器架构图:https://private-user-images.githubusercontent.com/147986893/413569551-1b276199-ae60-4221-b8e6-b266443a3641.png
- 官方文档:https://docs.upsonic.ai/
- Discord社区:https://discord.gg/dNKGm4dfnR
- Twitter:https://twitter.com/upsonicai
- PyPI下载:https://pypi.org/project/upsonic/
- 可靠性基准测试:https://github.com/Upsonic/Reliability-Benchmark
- 示例库:https://github.com/Upsonic/cookbook
二、核心特性
1、可靠性保障系统
- 验证代理:检测输出不一致、数值错误和幻觉
- 编辑代理:根据验证反馈修正输出
- 多轮验证:通过评分循环实现迭代质量改进
- 控制循环:在关键检查点确保准确性
class ReliabilityLayer:
prevent_hallucination = 10
agent = Agent("Coder", reliability_layer=ReliabilityLayer, model="openai/gpt4o")
2、模型上下文协议(MCP)
- 无需从头构建工具即可使用官方/第三方功能
- 支持数百个MCP服务器集成
3、生产级功能
- 支持AWS/GCP/Docker部署
- 异常安全的工具管理
- 人机交互任务执行能力
- 匿名遥测数据收集(可禁用)
三、快速开始
环境要求
- Python 3.10+
- OpenAI/Anthropic API密钥
# 安装命令
pip install upsonic
基础示例
from upsonic import Task, Agent
task = Task("Who developed you?")
agent = Agent("Coder")
agent.print_do(task)
MCP工具集成
from upsonic import Agent, Task, ObjectResponse
class FetchMCP:
command = "uvx"
args = ["mcp-server-fetch"]
web_agent = Agent("Web Content Analyzer", model="openai/gpt-4o")
task = Task(description="分析网页内容", context=["https://upsonic.ai"])
result = web_agent.print_do(task)
多代理协作
from upsonic import Agent, Task, MultiAgent
researcher = Agent("Company Researcher")
strategist = Agent("Outreach Strategist")
company_task = Task("分析公司信息")
message_task = Task("创建联系邮件")
results = MultiAgent.do([researcher, strategist], [company_task, message_task])
直接模型调用
from upsonic import Task, Direct
direct = Direct(model="openai/gpt-4o")
task = Task("AI在现实生活中的应用场景")
direct.print_do(task)
伊织 xAI 2025-05-03(六)