Upsonic - 面向生产环境的可靠性AI框架


一、项目概览

Upsonic是一个专注于可靠性的AI框架,通过验证层、三角架构、验证代理和输出评估系统等高级功能,为组织提供可信的智能体工作流解决方案。


相关资源


二、核心特性


1、可靠性保障系统

  • 验证代理:检测输出不一致、数值错误和幻觉
  • 编辑代理:根据验证反馈修正输出
  • 多轮验证:通过评分循环实现迭代质量改进
  • 控制循环:在关键检查点确保准确性
class ReliabilityLayer:
  prevent_hallucination = 10

agent = Agent("Coder", reliability_layer=ReliabilityLayer, model="openai/gpt4o")

2、模型上下文协议(MCP)

  • 无需从头构建工具即可使用官方/第三方功能
  • 支持数百个MCP服务器集成

3、生产级功能

  • 支持AWS/GCP/Docker部署
  • 异常安全的工具管理
  • 人机交互任务执行能力
  • 匿名遥测数据收集(可禁用)

三、快速开始


环境要求

  • Python 3.10+
  • OpenAI/Anthropic API密钥
# 安装命令
pip install upsonic



基础示例

from upsonic import Task, Agent

task = Task("Who developed you?")
agent = Agent("Coder")
agent.print_do(task)

MCP工具集成

from upsonic import Agent, Task, ObjectResponse

class FetchMCP:
    command = "uvx"
    args = ["mcp-server-fetch"]

web_agent = Agent("Web Content Analyzer", model="openai/gpt-4o")
task = Task(description="分析网页内容", context=["https://upsonic.ai"])
result = web_agent.print_do(task)

多代理协作

from upsonic import Agent, Task, MultiAgent

researcher = Agent("Company Researcher")
strategist = Agent("Outreach Strategist")

company_task = Task("分析公司信息")
message_task = Task("创建联系邮件")

results = MultiAgent.do([researcher, strategist], [company_task, message_task])

直接模型调用

from upsonic import Task, Direct

direct = Direct(model="openai/gpt-4o")
task = Task("AI在现实生活中的应用场景")
direct.print_do(task)

伊织 xAI 2025-05-03(六)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

富婆E

请我喝杯伯爵奶茶~!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值