第一章:随机事件和概率(三)

第三节、古典概率与条件概率

古典概率模型:等可能概型

(1)有限个样本点(基本事件)

(2)每个样本点(基本事件)是等可能发生的(即等概率的)

因此在计算古典概率时候,一般不用把样本空间详细写出,但一定要保证样本点的等可能。计算古典概率,主要用到排列组合的知识。计算的关键是基本事件、样本空间的选定以及基本事件数的计算。计数方法常用的有三种:

  • 列举法(直接查数法)

  • 集合对应法:加法原理、乘法原理、排列、组合

  • 逆数法(对立事件法):常用于计算含有“至少”字样的事件的概率。

随机分配:也叫随机占位,突出一个“放”字。即将𝒏个可辨质点随机地分配到𝑵个盒中,区分每盒最多可以容纳一个和可以容纳任意多个质点,不同分法的总数列表如下:

将𝒏个质点随机地分配到𝑵个盒中

分配方式

不同分法的总数

每盒可容纳任意多个质点

𝑵𝒏

每盒容纳至多一个质点

𝑷𝑵𝒏=𝑵(𝑵−1)...(𝑵−𝒏+1)

简单随机抽样:突出一个“取”字。在每种抽样方式下各种不同抽法(基本事件)的总数列表如下:

自含𝑵个元素的总体𝝮中𝒏次简单随机抽样

抽样方式

抽样总数

先后有放回取𝒏次

𝑵𝒏

先后无放回取𝒏次

𝑷𝑵𝒏=𝑵(𝑵−1)...(𝑵−𝒏+1)

任取𝒏个

𝑪𝑵𝒏

例题:5封信投入4个信箱,仅有一个信箱没有信的概率?

先任意1个信箱没有信(C(4,1)=4);再将5封信投入到另3个信箱,可先将这5封信分组,可有(3,1,1)和(2,2,1)两种情况,每种情况又有3种排列形式。

例题:抛三枚硬币,求至少出现一个正面的概率?

事件“至少出现一个正面”的对立事件为“三个都是反面”,其所含样本点个数为1.因此事件“至少出现一个正面”所含样本点个数就是𝛺-1=2^3-1=7. 所求概率P(A)=7/8。

古典概率满足性质:
  1. 非负性:对于每一个事件A,有 0 ≤ P(A) ≤ 1

  1. 规范性:P(𝛺)=1,P(𝝓)=0

  1. 有限可加性

几何概率:通过几何度量计算的概率。

1)随机试验的样本空间为某可度量的区域𝛺;如果𝛺是一维、二维或三维的区域,则𝛺的几何度量分别是长度、面积和体积。

2)𝛺中任一区域出现的可能性的大小与该区域的几何度量成正比而与该区域的位置和形状无关。

几何概率模型满足性质:
  1. 非负性:对于每一个事件A,有 0 ≤ P(A) ≤ 1

  1. 规范性:P(𝛺)=1,P(𝝓)=0

  1. 完全可加性

显然,当古典概率的试验结果为连续无穷多个时,就归结为几何概率。即古典模型与几何模型的区别:基本事件有限、等可能的随机试验为古典模型;基本事件无限且具有几何度量、等可能的随机试验为几何模型。

注:P(A)=0不能断言A=𝝓(即不能说A就不可能发生);P(A)=1也不能断言A=𝛺(即不能说A就一定发生)。同理,P(A∪B)=1不能推出A∪B=𝛺,同样P(AB)=0也不能推出AB=𝝓。这两个关系只能从右往左推成立,仅给出概率是得不到事件的结论的。


条件概率:Conditional probability

就是在附加了一定的条件之下(其形式可归结为“已知某事件发生了”)所计算的概率。

设A,B是两个事件,且P(A) > 0,称P(B|A)=P(AB)/P(A) 为事件A发生的条件下事件B发生的条件概率。可理解为B中样本点在A中所占的比例

由此定义可得乘法公式(可分当P(A)>0 或 P(B)>0两种情况),并可推广到求多个事件积事件概率的情况。

条件概率模型满足符合概率定义的三条件:

  1. 非负性:对于某一事件B,有 P(B|A) ≥ 0

  1. 规范性:对于必然事件𝛺,P(𝛺|A)=1

  1. 可列可加性

全概率公式:(由因得果

若B1,B2,..., Bn为完备事件组(也称为𝛺的一个划分,即B1+B2+...+Bn=𝛺且BiBj=𝝓,i≠j),P(Bi) > 0 ,则有

全概率公式给出我们一个用来计算在众多原因B1,B2,..., Bn的作用下事件A发生概率的方法。即全概率公式的优点是当P(A)不易求但其条件概率容易计算时,可用该公式求得P(A)

相应地,若A1,A2,..., An为完备事件组(也称为𝛺的一个划分,即A1+A2+...+An=𝛺且AiAj=𝝓,i≠j),P(Ai) > 0 ,则有

全概率公式是条件概率的求和全概率公式的最简形式

例题:袋中有5球,其中3红2白,每次取出一个球(不放回)用A表示第一次取到红球概率,B表示第二次取到红球概率,求P(A)和P(B)。

贝叶斯公式:(由果溯因

基于条件概率的贝叶斯定理极其简单:

公式中P(A)或P(B)可称为先验概率(不需要考虑其他方面的任何因素)或边缘概率,一般是根据以往的经验和知识推断出来的。而P(A|B)或P(B|A)可称为条件概率或后验概率。贝叶斯公式利用了后验概率来修正先验概率的这一思想。可以理解为:后验概率P(A|B) (B发生后A的概率)= 先验概率P(A) * 可能性函数(调整因子,即新信息B带来的调整,使先验概率更接近真实概率)。

贝叶斯定理

在信息和条件有限的情况下,基于过去的数据或经验,通过动态调整的方法,帮助我们一步步预测出事件发生的接近真实的概率。其根本思想是【后验概率 = 先验概率 * 调整因子】,其中【先验概率】就是在信息不完整情况下做出的主观概率预测;【调整因子】则是在信息收集不断完善的过程中对先验概率的调整;【后验概率】则是经过调整后最终作出的概率预测

例:有两个桶,1号桶里有40个球,其中30个白球,10个黑球;2号桶里也有40个球,其中20个白球,20个黑球。问抽取一个球是1号桶的白球的概率。

条件概率:从1号桶抽取白球的概率P(B|A)=30/40=75%;从2号桶中抽取白球的概率P(B|C)=20/40=50%;

全概率:抽取一个球,为白球的概率,这个概率是全概率,是1号桶中抽取白球和2号桶中抽取白球两个事件的概率之和。

逆概率/贝叶斯定理:抓取了一个球是白球,那么这个球来自1号桶的概率P(A|B)是多少。

抽取一个球,在信息不完整的情况下,这个球来自1号桶的概率为50%;在我们知道这个球是白球的条件下,那么这个球来自1号桶的可能性提高了20%(调整因子为1.2),则最终抽取的是白球且来自1号桶的概率将提升到60%。

贝叶斯公式/逆全概率公式:事件𝑩𝒌的概率为𝑷(𝑩𝒌),在事件𝑩𝒌发生条件下事件𝑨发生的概率为𝑷(𝑨|𝑩𝒌),在事件𝑨发生条件下事件𝑩𝒌发生的概率为𝑷(𝑩𝒌|𝑨)。

从纯公式看,分子总是分母的一部分。可以看成是解决由观察到的现象或测量的数据去推断现象或数据后面的规律发生的概率的问题。是通过现象(结果)去推断事情发生的本质(原因)。


例题解析
1、一机器在良好状态生产合格产品几率是90%,在故障状态生产合格产品几率是30%,机器良好的概率是75%,若一日第一件产品是合格品,那么此日机器良好的概率是多少?
分析:A={合格产品},B={机器良好},故P{A|B}=90%,P{A|B-}=30%,P(B)=75%,求P{B|A}
解:P(B|A)=P(A|B)P(B)/P(A)=P(A|B)P(B)/P(A|B)P(B)+P(A|B-)P(B-)=90%×75%/90%×75%+30%×25%=90%


事件的独立性:A的概率不受B发生与否的影响,就有P(A)=P(A|B)的关系。

定义1:设A、B是两个事件,如果P(AB)=P(A)P(B),则称A与B相互独立。

即两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。简言之,事件积的概率等于事件概率的积

当P(A)>0时,A与B相互独立当且仅当P(B|A) = P(B),这是A与B相互独立的充分必要条件。

不可能事件𝞥及必然事件𝞨与任意事件A都相互独立。若有P(A)=0或P(A)=1,则A与任意事件都独立。但要谨记:仅给出概率是得不到事件的结论的。即P(A)=0不能断言A=𝝓(即不能说A就不可能发生);P(A)=1也不能断言A=𝛺(即不能说A就一定发生)。

注意:不要把事件A与B的独立性与事件A与B的互不相容A、B互斥:P(AB)=0)混淆。画文氏图能判断两事件是否互斥,但不能判断两事件是否相互独立。“互不相容”与“相互独立”没有必然联系,不能由其中一个推出另一个。事实上,当P(A)P(B)>0时,有:如果A与B相互独立,则A与B一定不会互斥(即A、B相互独立与A、B互斥不能同时成立,它们是完全不同的两个概念:𝑨、𝑩相互独立是从概率的角度来考虑的,𝑨、𝑩互不相容是从事件本身来考虑的。)。

𝑨、𝑩互斥事件

𝑨、𝑩相互独立事件

概念

不可能同时发生的两个事件叫做互斥事件

事件A是否发生对事件B发生的概率没有任何影响

符号

互斥事件中至少一个发生,记𝑨∪𝑩 或 𝑨+𝑩

相互独立事件有可能同时发生,记𝑨∩𝑩 或 𝑨𝑩

计算公式

加法公式:𝑷(𝑨∪𝑩)=𝑷(𝑨)+𝑷(𝑩) 计算𝑨或𝑩发生的概率

乘法公式:𝑷(𝑨𝑩)=𝑷(𝑨)𝑷(𝑩) 计算同时发生的概率

如果𝑨、𝑩是两个相互独立的事件,则1−𝑷(𝑨)𝑷(𝑩)表示:相互独立的两个事件中至少有一个不发生的概率。而1−𝑷(𝑨逆)𝑷(𝑩逆)表示:相互独立的两个事件中至少有一个发生的概率,即等于𝑷(𝑨∪𝑩)

定义2:设A、B,C是三个事件,如果P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C),P(ABC)=P(A)P(B)P(C),

则称A、B、C相互独立。简称独立。

定义3:设A、B,C是三个事件,如果P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C),则称A、B、C两两独立。

注:相互独立一定是两两独立,两两独立则不一定相互独立。

相互独立性的性质:

若事件A1,A2,...,An相互独立时,则其中任意k(1<k≤n)个事件也相互独立。

如果A、B、C相互独立时,就有

由此A1,A2,...,An独立时,就有如下公式:


例题解析
1、有两门高射炮独立地射击一架敌机,设甲炮击中敌机的概率为0.8,乙炮击中敌机的概率为0.7,试求敌机被击中的概率。
分析:求敌机被击中的概率,即敌机至少会被击中一次的概率,这是个𝑨+𝑩事件。
解:设𝑨={甲炮击中敌机},𝑩={乙炮击中敌机},则𝑨∪𝑩={敌机被击中},又因𝑨、𝑩事件是相互独立的,故:P(𝑨∪𝑩)=P(𝑨)+P(𝑩)-P(𝑨𝑩)=P(𝑨)+P(𝑩)-P(𝑨)P(𝑩)=0.8+0.7-0.8×0.7=0.94

2、有甲、乙两批种子,发芽率分别为0.8和0.7,并假设每批种子发芽与否是相互独立的,从两批种子中各随机地抽取一粒,求:(1)两粒都能发芽的概率;(2)至少有一粒种子能发芽的概率;(3)恰好有一粒种子能发芽的概率;
分析:都能发芽,是一个交事件。至少有一粒发芽,是一个并事件。恰好有一粒发芽是一个夫唱妇随的并事件。
解:设𝑨={取自甲批种子中的某粒种子能发芽},𝑩={取自乙批种子中的某粒种子能发芽},则所求的概率分别为:(1) P(𝑨𝑩)=0.56 ; (2) P(𝑨∪𝑩) =0.94; (3) P(𝑨𝑩-∪𝑨-𝑩)=0.8×(1-0.7)+(1-0.8)×0.7=0.38

独立重复试验:

在相同条件下重复进行𝒏次试验,且各次试验的结果相互独立,称为𝒏次独立重复试验,其中𝑨𝒊(𝒊=1,2,...,𝒏)是第𝒊次试验结果,则 𝑷(𝑨1𝑨2𝑨3…𝑨𝒏)=𝑷(𝑨1)𝑷(𝑨2)𝑷(𝑨3)…𝑷(𝑨𝒏) 。如果所做的该独立重复试验只有两种结果:发生(概率为𝒑)或不发生(概率为1−𝒑),则称为伯努利试验。

伯努利试验(Bernoulli experiment)是在同样的条件下重复地相互独立地进行的一种随机试验,其特点是该随机试验只有两种可能结果:发生或者不发生。我们假设该项试验独立重复地进行了n次,那么就称这一系列重复独立的随机试验为n重伯努利试验,或称为伯努利概型(是一种与计数有关的概率模型)。

𝒏重伯努利试验:试验只有两个结果:要么发生,要么不发生。

而且已知每次试验𝑨发生的概率𝑷(𝑨)=𝒑不变, 0<𝒑<1,且将试验独立重复进行𝒏次。

二项分布(𝒏重伯努利试验)的三个特点:

  • 每次试验结果,只能是事件𝑨发生或者事件𝑨不发生。

  • 各次试验独立重复进行,各次的试验结果互不影响。

  • 相同的试验条件下,每次试验中事件𝑨的发生概率𝒑是相同的。

定理1:在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),则事件A恰好发生k次的概率为:

q=1-p,则上述公式就是二项概率公式

如果用𝙓表示𝒏重伯努利试验事件𝑨发生的次数,则𝙓~𝑩(𝒏, 𝒑),即

备注:二项式(p+q)^k的展开式的各项系数,可看杨辉三角:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值