数据结构-查找

1.静态查找表(顺序查找、折半查找、插值查找、静态最优查找树、静态次优查找树、分块查找)

  插值查找适合关键字均匀分布的有序表。

  如果有序表中各记录的查找概率不等,则使查找性能达最佳的判定树是其带权路径长度之和取最小值的二叉树,即静态最优查找树。构造静态最优查找树的时间代价较高,一般以次优查找树代替。构造次优查找树的方法是,取第i个节点作为根节点,使得左右子树的权值差最小。然后递归进行。

2.动态查找表(二叉排序树、平衡二叉树、B-树、B+树)

  在随机情况下,二叉排序树的查找长度和log n等量级,最坏情况下,O(n)。

  平衡二叉树查找的时间复杂度O(log n)。

  B-树与B+树的区别在于B+树叶子节点包含了所有关键字信息。所以B+树的优势:1.内部节点不含关键字,所以小,所以最终读写代价更低。2.查询效率稳定。3.支持快速元素遍历。B*树内部节点保存了指向兄弟的指针,分裂的时候分配新节点的概率比B+树低,空间使用率更高。

3.哈希表

  哈希函数的构造方法:直接定址法,取关键字或关键字的某个线性函数值为哈希地址;数字分析法,取关键字的若干数位组成哈希地址;平方取中法,取关键字平方后的中间几位为哈希地址;折叠法,将关键字分割成位数相同的几部分,然后取这几部分的叠加和作为哈希地址;除留余数法,取关键字被某个不大于表长的数p除后所得余数为哈希地址。

  处理冲突的方法:开放定址法,再哈希法,链地址法,建立公共溢出缓冲区。


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值