问题:
一个长度为L(L>=1)的升序序列S,处在第[L/2]个位置的数称为S的中位数。例如,若序列S1=(11,13,15,17,19),则S1的中位数是15,两个序列的中位数是含它们所有元素的升序序列的中位数。例如,若S2=(2,4,6,8,20),则S1和S2的中位数为11,。现在有两个等长升序序列A和B,试设计一个在时间和空间两方面都尽可能高效的算法,找出两个序列A和B的中位数。要求:
(1)给出算法的基本设计思想。
(2)根据设计思想,采用 C 或C++或java语言描述算法,关键之处给出注释
(3)说明你所设计算法的时间复杂度和空间复杂度。
1.
设A序列的中位数是a,B序列的中位数是b
第一步:若a=b,则a=b即为所求
第二步:若a<b,舍弃A的中位数的前一部分,舍弃B的中位数的后一部分,且舍弃的个数相等
第三步: 若a&

该博客探讨如何设计一个高效的算法来找出两个等长升序序列A和B的中位数。算法基于比较序列中位数的思想,通过舍弃序列部分元素来逐步接近中位数。在a等于b时直接得出结果,a小于b时舍弃A前部分和B后部分,反之舍弃B后部分和A前部分。算法的时间复杂度为O(log2 n),空间复杂度为O(1)。
最低0.47元/天 解锁文章
1938

被折叠的 条评论
为什么被折叠?



