傅里叶变换对

每个时域波形有对应的频域波形,反之也成立。例如,时域的矩形脉冲对应于频域的sinc函数,对偶性则说明反之也成立,即频域矩形脉冲对应于时域的sinc函数。这种形式的对称叫做傅里叶变换对。

Delta函数对

对于离散信号,delta函数是个简单的波形。下图显示了时域的delta函数和他们对应频谱幅度和相位,频域幅度是恒定值,而相位为0。这可以由压缩扩展来理解。当时域一直压缩变为脉冲,则频域则扩展为恒定值。d和g中时域波形移位4个和8个采样点。时域移位不影响幅度,但是对相位增加了线性分量。


下图显示了和上图同样的信息但是频域是矩形形式。这里有两个问题,对比极化形式和矩形形式,极化形式更容易理解,因为在矩形形式实部和虚部是正弦波。另外一个是DFT的对偶特性,传统观点,频域每个点对应时域的正弦波,反之也是成立的,时域的每个采样点也对应于频域的正弦波。将负频率包括在内使对偶特性更易于理解。


上图的d、e、f显示了在采样点4的时域脉冲导致了频谱实部包含4个余弦波,虚部包含4个负的正弦波。这可以用另外一种方法计算DFT。时域每个采样点导致在频域的实部加上一个余弦波,而在频域虚部加上负的正弦波。正弦波幅度由时域样点幅度给出。每个正弦波的频率由时域采样点的第几个点数确定。算法包括:遍历时域采样点,计算对应每个采样点的正弦和余弦波,将所有正余弦波相加。

Sinc函数

下图给出了常用的变换对,矩形脉冲和Sinc函数。sinc函数的定义是sinc(a)=sin(πa)/πa。在下图a中矩形脉冲关于采样点0对称。对应的DFT如b和c所示。unwrapped 版本如图d和e所示。


对于unwrapped的频谱,幅度随着频率增加以正弦波振荡递减。相位则对应于全0,因为时域信号是关于采样点0对称。unwrapped幅度代表既有正数也有负值。按照定义来说幅度必须为正值。如b和c所示,幅度都是正数通过引入频率的相移π。在f中信号进行了移位,使其不是关于0点对称了。这不会改变频域的幅度,但是在相位增加了线性分量,导致其一团糟。N点时域信号其中有M点信号单位幅度的矩形脉冲,其DFT频谱是:


类似的,DTFT如下,


换句话说,DFT结果在频域提供了N/2+1个采样点。而DTFT的结果给出了连续波形。这些方程只给出了幅度,而幅度只是由时域波形的左右位置来确定。如上图,震荡的幅度在频率0.5到来之前不会降到0。如果发生混叠时波形会延伸到下一个周期。

当混叠不发生时的频谱需要深入理解。这是由于常用离散信号代表或者建模连续信号,而连续信号不会混叠。为了去掉上面两个方程的混叠,将分母中的sin(πk/N)用πk/N代替,sin(πf)用πf代替。下图显示了这样做的意义。f从0~0.5,而πf的范围是0~1.5708。在这个范围内πf和sin(πf)差别不大。


当矩形脉冲频谱没有混叠时,其一般形式时sin(x)/x,对于连续信号,矩形脉冲和sinc函数是傅里叶变换对。对于离散信号只是近似。注意sinc函数的除0问题,当x为0时根据极限定理值为1。

sinc函数的关键特性是过零。

其他变换对

下面图片讲了对偶性,频域的矩形脉冲对应时域的sinc函数加上混叠。


有混叠效应时,时域信号如下:


为了消除上述方程中的混叠效应,假设频域理想采样,时域是无限长非周期信号。这里用到DTFT。结果如下方程所示:


这个方程在DSP中很重要,因为在频域中矩形脉冲是理想的低通滤波器。因此,这个方程描述的sinc函数是理想低通滤波器的核函数。这是基于sinc滤波器窗函数设计滤波器的基础。图c和d显示了时域三角脉冲对应频域sinc函数的平方。M点矩形时域脉冲卷积自身得到2M-1个采样点三角波。由于时域卷积对应频域相乘,频域是sinc函数的相乘。

有没有波形的傅里叶变换是其自身?有且有一种就是高斯波形。图e给出了一个高斯曲线,f显示了频谱也是一个高斯曲线。这种关系只有在你忽略混叠时成立。f中只给出了单边高斯频谱。

图g显示了高斯突发脉冲,将正弦波乘以高斯脉冲,对应的高斯中心频率就不是0频了。时域相乘对应频域卷积,正弦波的频谱是中心频率为正弦波频率的delta函数。高斯脉冲频谱是在零频的高斯脉冲。

吉布斯效应

下图显示了由正弦波综合组成的时域信号。将要被合成的信号是下图中的h,由于信号是1024点长的,这将由513个单独的频率来合成。图a到图g显示了如果只用到一部分频率合成信号的结果。例如f显示了只用频率0~100的合成结果。这个信号时由将h信号做DFT然后将101~512设置为0,再做IDFT得到时域信号。

随着越来越多频率加入到重建的信号中,信号变得越来越接近最终结果。一个关键点是最终结果的边缘处如何处理。再h中由三个沿信号,两个是矩形脉冲的边沿,第三个是由于DFT将时域信号看作周期的1023采样点和0采样点处。当只使用一部分频率进行重建时,每个边沿会产生过冲和振铃,这种过冲和振铃就是吉布斯效应。

仔细观察e,f,g的过冲,当加入更多的正弦波时,过冲的宽度减小,但是过冲的幅度保持相同,大概9%。对于离散信号这不是问题,当最后一个频率加入时过冲被消除,但是连续信号的重建不能这样简单解释。无限数目的正弦波相加合成连续信号。问题是,随着正弦波数目趋于无穷过冲的幅度并不会降低而是保持在9%左右。是否可能将连续正弦波相加重建边沿信号。回想拉格朗日和傅里叶的争执。

关键因素是当更多的正弦波加入时过冲宽度变得越来越小。当无穷正弦波相加时过冲依旧存在但是趋于0宽度。正如吉布斯所展示,两者之间能量差为0。

再DSP中Gibbs效应经常遇到,比如低通滤波器将高频信号截断,在时域导致过冲 和振铃。另一个常见的是将时域信号尾部截断阻止他们进入临周期。根据对偶性,这将损坏频域的边沿。


谐波

如果信号周期是包含频率f,那么必将包含其正数倍频率f,2f,3f...等等。这些频率叫做谐波。一次谐波叫做f,二次谐波叫做2f,等等。一次谐波也叫做基波频率。

上图a显示了一个正弦波,图b是其DFT,一个单独的脉冲。在c中正弦波被破坏,顶部峰值出现毛刺。图d显示了这种破坏在频域带来的结果。由于被破坏的信号和原始正弦波频率相同。频域信号由原始脉冲加上谐波组成。谐波可能是任意任意幅度。然而,随着频率的增加谐波幅度减小。任意信号锋利的边沿导致更高的频率。例如,一个通常的TTL逻辑门产生一个1kHz的方波,边沿在几ns内升高导致产生近100MHz的谐波。

图e显示了一个微妙的谐波分析,如果信号关于横坐标轴对称,例如上面的值是下面值得镜像对称,所有偶次谐波的值为0。在f中信号只有基波,三次谐波,五次谐波等等。

所有连续周期信号可以用谐波和来描述。离散周期信号有个问题导致这个结论不成立。这个问题就是混叠。

下图显示了一个被破坏的正弦波,和之前的类似顶部峰值畸变,这次的正弦波频率更高,导致了周期更短。b显示了这个信号的频谱。这个例子显示谐波可能延伸到0.5频率之外,这将在0-0.5倍采样率频率处产生混叠。b中感知不到因为他们的幅度太小了,c则画出了在对数坐标轴。乍一看频谱像噪声,实际不是,这是许多谐波由于混叠叠加的结果。

这个例子很重要,因为是数字化之后的混叠表示,如果在模拟域受到破坏,可以在数字化前用抗混叠滤波器滤除谐波。

只有直接对一个离散信号进行非线性操作时谐波混叠才会成为问题。尽管如此,混叠谐波的幅度一般较小可以忽略。

谐波的概念因为另外的原因有用,他解释了DFT为何将时域和频域信号看作周期信号。在频域,N点DFT包括N/2+1个等间隔频率。你可以将采样点之间的频率看作0或者是不存在。这两种方法都不会在综合产生时域信号时产生影响。换句话说,离散频谱包括谐波,而不是连续范围的频率。这就要求时域时周期的,频率等于频域最低正弦波即基波频率。忽略DC,最低频率代表了在频域每N个采样点组成一个完整周期,导致了时域是以N为周期。换句话说,如果一个 域是离散的,另一个域必定是周期的,反之亦对。由于DFT将时域频域都看作离散的,因此两个域必定是周期的。

  • 4
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值