折线分割平面
【题目描述】
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。
【输入】
输入数据的第一行是一个整数n(0
【输出】
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。
【样例输入】
1
2
【样例输出】
2
7
【题目分析】
当第n个折线加入时,已有f(n-1)个平面;当第n条折线将与这2(n-1)条折线构成4(n-1)个交点,将使平面多4(n-1)个区域,而第n条折线的顶点将使平面多一个区域;所以:f(n) = f(n-1)+4(n-1)+1
结论:N = 2n(2n+1)/2+1-2n = 2n^2-n+1
#include <stdio.h>
#include <math.h>
int main(int argc,char* argv[])
{
int n;
while(scanf("%d", &n) != EOF){
printf("%d\n", 2*n*n-n+1);
}
return 0;
}
平面分割问题
【题目描述】
设有n条封闭曲线画在平面上,而任何两条封闭曲线恰好相交于两点,且任何三条封闭曲线不相交于同一点,问这些封闭曲线把平面分割成的区域个数。
【输入】
对每一笔测资,输入只有一行:整数n (0,1000)
【输出】
一行:一个整数
【样例输入】
1
3
10
30
500
【样例输出】
2
8
92
872
249502
【题目分析】
f(1) = 2;
f(n) = f(n-1)+2(n-1)
#include <stdio.h>
int main(int argc,char* argv[])
{
int n;
while(scanf("%d", &n) != EOF){
printf("%d\n",n*n-n+2);
}
return 0;
}
骨牌铺方格
【题目描述】
在2×n的一个长方形方格中,用一个1× 2的骨牌铺满方格,输入n ,输出铺放方案的总数.
例如n=3时,为2× 3方格,骨牌的铺放方案有三种,如下图:
【输入】
输入数据由多行组成,每行包含一个整数n,表示该测试实例的长方形方格的规格是2×n (0,50]。
【输出】
对于每个测试实例,请输出铺放方案的总数,每个实例的输出占一行。
【样例输入】
1
3
2
【样例输出】
1
3
2
【题目分析】
f(n) = f(n-1)+f(n-2)
#include <stdio.h>
int main(int argc,char* argv[])
{
int n, i;
while(scanf("%d", &n) != EOF){
double f1 = 0,f2 = 1,f3 ;
for(i = 0;i < n;i++){
f3 = f1 + f2;
f1 = f2;
f2 = f3;
}
printf("%.0lf\n", f3);
}
return 0;
}
不容易系列之(3)—— LELE的RPG难题
【题目描述】
人称“AC女之杀手”的超级偶像LELE最近忽然玩起了深沉,这可急坏了众多“Cole”(LELE的粉丝,即”可乐”),经过多方打探,某资深Cole终于知道了原因,原来,LELE最近研究起了著名的RPG难题:
有排成一行的n个方格,用红(Red)、粉(Pink)、绿(Green)三色涂每个格子,每格涂一色,要求任何相邻的方格不能同色,且首尾两格也不同色.求全部的满足要求的涂法.
以上就是著名的RPG难题.
如果你是Cole,我想你一定会想尽办法帮助LELE解决这个问题的;如果不是,看在众多漂亮的痛不欲生的Cole女的面子上,你也不会袖手旁观吧?
【输入】
输入数据包含多个测试实例,每个测试实例占一行,由一个整数N组成,(0
#include <stdio.h>
long long a[51];
int main(int argc,char* argv[]) {
int n, i;
a[1] = 3;
a[2] = 6;
a[3] = 6;
for(i = 4; i < 51; i++) {
a[i] = a[i-1] + 2*a[i-2];
}
while(scanf("%d", &n) != EOF) {
printf("%lld\n", a[n]);
}
return 0;
}
【法2】
#include <stdio.h>
long long a[51], b[51];
int main(int argc,char* argv[])
{
int n, i;
a[1] = 3;
a[2] = 6;
b[1] = 3;
b[2] = 6;
for(i = 3;i < 51;i++){
a[i] = 2 * a[i-1];
b[i] = a[i] - b[i-1];
}
while(scanf("%d", &n) != EOF) {
printf("%lld\n", b[n]);
}
return 0;
}
参考