数学归纳解决递归问题

折线分割平面

【题目描述】

我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。

这里写图片描述

【输入】

输入数据的第一行是一个整数n(0

【输出】

对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。

【样例输入】

1
2

【样例输出】

2
7

【题目分析】

当第n个折线加入时,已有f(n-1)个平面;当第n条折线将与这2(n-1)条折线构成4(n-1)个交点,将使平面多4(n-1)个区域,而第n条折线的顶点将使平面多一个区域;所以:f(n) = f(n-1)+4(n-1)+1
结论:N = 2n(2n+1)/2+1-2n = 2n^2-n+1

#include <stdio.h>
#include <math.h>

int main(int argc,char* argv[])
{
    int n;
    while(scanf("%d", &n) != EOF){
        printf("%d\n", 2*n*n-n+1);
    }
    return 0;
}

平面分割问题

【题目描述】
设有n条封闭曲线画在平面上,而任何两条封闭曲线恰好相交于两点,且任何三条封闭曲线不相交于同一点,问这些封闭曲线把平面分割成的区域个数。
这里写图片描述

【输入】
对每一笔测资,输入只有一行:整数n (0,1000)

【输出】
一行:一个整数

【样例输入】
1
3
10
30
500

【样例输出】
2
8
92
872
249502

【题目分析】
f(1) = 2;
f(n) = f(n-1)+2(n-1)

#include <stdio.h>

int main(int argc,char* argv[])
{
    int n;
    while(scanf("%d", &n) != EOF){
        printf("%d\n",n*n-n+2);
    }
    return 0;
}

骨牌铺方格

【题目描述】
在2×n的一个长方形方格中,用一个1× 2的骨牌铺满方格,输入n ,输出铺放方案的总数.
例如n=3时,为2× 3方格,骨牌的铺放方案有三种,如下图:
这里写图片描述

【输入】
输入数据由多行组成,每行包含一个整数n,表示该测试实例的长方形方格的规格是2×n (0,50]。

【输出】
对于每个测试实例,请输出铺放方案的总数,每个实例的输出占一行。

【样例输入】
1
3
2

【样例输出】
1
3
2

【题目分析】
f(n) = f(n-1)+f(n-2)

#include <stdio.h>

int main(int argc,char* argv[])
{  
    int n, i;
    while(scanf("%d", &n) != EOF){
        double f1 = 0,f2 = 1,f3 ;
        for(i = 0;i < n;i++){
            f3 = f1 + f2;
            f1 = f2;
            f2 = f3;
        }
        printf("%.0lf\n", f3);
    }
    return 0;
}

不容易系列之(3)—— LELE的RPG难题

【题目描述】
人称“AC女之杀手”的超级偶像LELE最近忽然玩起了深沉,这可急坏了众多“Cole”(LELE的粉丝,即”可乐”),经过多方打探,某资深Cole终于知道了原因,原来,LELE最近研究起了著名的RPG难题:

有排成一行的n个方格,用红(Red)、粉(Pink)、绿(Green)三色涂每个格子,每格涂一色,要求任何相邻的方格不能同色,且首尾两格也不同色.求全部的满足要求的涂法.

以上就是著名的RPG难题.

如果你是Cole,我想你一定会想尽办法帮助LELE解决这个问题的;如果不是,看在众多漂亮的痛不欲生的Cole女的面子上,你也不会袖手旁观吧?

【输入】
输入数据包含多个测试实例,每个测试实例占一行,由一个整数N组成,(0

#include <stdio.h>

long long a[51];

int main(int argc,char* argv[]) {
    int n, i;
        a[1] = 3;
        a[2] = 6;
        a[3] = 6;
        for(i = 4; i < 51; i++) {
            a[i] = a[i-1] + 2*a[i-2];
        }
    while(scanf("%d", &n) != EOF) {
        printf("%lld\n", a[n]);
    }
    return 0;
}

【法2】

#include <stdio.h>
long long a[51], b[51];

int main(int argc,char* argv[])
{
    int n, i;
    a[1] = 3;
    a[2] = 6;
    b[1] = 3;
    b[2] = 6;
    for(i = 3;i < 51;i++){
        a[i] = 2 * a[i-1];
        b[i] = a[i] - b[i-1];
    }
    while(scanf("%d", &n) != EOF) {
        printf("%lld\n", b[n]);
    }
    return 0;
}

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值