历届试题 高僧斗法
时间限制:1.0s 内存限制:256.0MB
问题描述
古时丧葬活动中经常请高僧做法事。仪式结束后,有时会有“高僧斗法”的趣味节目,以舒缓压抑的气氛。
节目大略步骤为:先用粮食(一般是稻米)在地上“画”出若干级台阶(表示N级浮屠)。又有若干小和尚随机地“站”在某个台阶上。最高一级台阶必须站人,其它任意。(如图1所示)
两位参加游戏的法师分别指挥某个小和尚向上走任意多级的台阶,但会被站在高级台阶上的小和尚阻挡,不能越过。两个小和尚也不能站在同一台阶,也不能向低级台阶移动。
两法师轮流发出指令,最后所有小和尚必然会都挤在高段台阶,再也不能向上移动。轮到哪个法师指挥时无法继续移动,则游戏结束,该法师认输。
对于已知的台阶数和小和尚的分布位置,请你计算先发指令的法师该如何决策才能保证胜出。
节目大略步骤为:先用粮食(一般是稻米)在地上“画”出若干级台阶(表示N级浮屠)。又有若干小和尚随机地“站”在某个台阶上。最高一级台阶必须站人,其它任意。(如图1所示)
两位参加游戏的法师分别指挥某个小和尚向上走任意多级的台阶,但会被站在高级台阶上的小和尚阻挡,不能越过。两个小和尚也不能站在同一台阶,也不能向低级台阶移动。
两法师轮流发出指令,最后所有小和尚必然会都挤在高段台阶,再也不能向上移动。轮到哪个法师指挥时无法继续移动,则游戏结束,该法师认输。
对于已知的台阶数和小和尚的分布位置,请你计算先发指令的法师该如何决策才能保证胜出。
输入格式
输入数据为一行用空格分开的N个整数,表示小和尚的位置。台阶序号从1算起,所以最后一个小和尚的位置即是台阶的总数。(N<100, 台阶总数<1000)
输出格式
输出为一行用空格分开的两个整数: A B, 表示把A位置的小和尚移动到B位置。若有多个解,输出A值较小的解,若无解则输出-1。
样例输入
1 5 9
样例输出
1 4
样例输入
1 5 8 10
样例输出
1 3
#include<iostream>
#include<cstdio>
using namespace std;
int a[1010];
int main(){
int k;
char c;
int t=0;
while (1){
scanf("%d%c",&k,&c);
a[++t]=k;
if (c=='\n') break;
}
k=0;
int ans=0;
//每两个相邻的为一堆,转化成尼姆
while (2*k+2<=t){
ans^=(a[2*k+2]-a[2*k+1]-1); //这么多堆,所有的进行亦或操作
k++;
}
if (ans==0) cout<<"-1"<<endl; //代表每列有偶数个1 ,这时候是必输的,因此是无解
else{
for (int i=1;i<t;i++){ //对于每一个小和尚
for (int j=a[i]+1;j<a[i+1];j++){ //每个小和尚可以走的位置
k=a[i]; //保留初始状态
a[i]=j; //尝试走
int ans=0;
for (int l=2;l<=t;l+=2)
ans^=(a[l]-a[l-1]-1); //根据尼姆,进行亦或操作,如果结果为0,将这个局面给对方,自己就可以赢
if (ans==0){
cout<<k<<" "<<j<<endl;
break;
}
a[i]=k; //回到原来的状态
}
}
}
return 0;
}