历届试题 高僧斗法 博弈论 尼姆

  历届试题 高僧斗法  
时间限制:1.0s   内存限制:256.0MB
       
问题描述
  古时丧葬活动中经常请高僧做法事。仪式结束后,有时会有“高僧斗法”的趣味节目,以舒缓压抑的气氛。
  节目大略步骤为:先用粮食(一般是稻米)在地上“画”出若干级台阶(表示N级浮屠)。又有若干小和尚随机地“站”在某个台阶上。最高一级台阶必须站人,其它任意。(如图1所示)
  两位参加游戏的法师分别指挥某个小和尚向上走任意多级的台阶,但会被站在高级台阶上的小和尚阻挡,不能越过。两个小和尚也不能站在同一台阶,也不能向低级台阶移动。
  两法师轮流发出指令,最后所有小和尚必然会都挤在高段台阶,再也不能向上移动。轮到哪个法师指挥时无法继续移动,则游戏结束,该法师认输。
  对于已知的台阶数和小和尚的分布位置,请你计算先发指令的法师该如何决策才能保证胜出。
输入格式
  输入数据为一行用空格分开的N个整数,表示小和尚的位置。台阶序号从1算起,所以最后一个小和尚的位置即是台阶的总数。(N<100, 台阶总数<1000)
输出格式
  输出为一行用空格分开的两个整数: A B, 表示把A位置的小和尚移动到B位置。若有多个解,输出A值较小的解,若无解则输出-1。
样例输入
1 5 9
样例输出
1 4
样例输入
1 5 8 10
样例输出

1 3

#include<iostream> 
#include<cstdio> 
using namespace std;  
int a[1010];  
int main(){  
    int k;  
    char c;  
    int t=0;  
    while (1){  
        scanf("%d%c",&k,&c);  
        a[++t]=k;  
        if (c=='\n') break;  
    }  
    k=0;  
    int ans=0;  
//每两个相邻的为一堆,转化成尼姆
    while (2*k+2<=t){  
        ans^=(a[2*k+2]-a[2*k+1]-1); //这么多堆,所有的进行亦或操作 
        k++;  
    }  
    if (ans==0) cout<<"-1"<<endl; //代表每列有偶数个1 ,这时候是必输的,因此是无解
    else{  
        for (int i=1;i<t;i++){ //对于每一个小和尚
            for (int j=a[i]+1;j<a[i+1];j++){  //每个小和尚可以走的位置
                k=a[i];  //保留初始状态
                a[i]=j;  //尝试走
                int ans=0;  
                for (int l=2;l<=t;l+=2)  
                    ans^=(a[l]-a[l-1]-1);  //根据尼姆,进行亦或操作,如果结果为0,将这个局面给对方,自己就可以赢
                if (ans==0){  
                    cout<<k<<" "<<j<<endl;  
                    break;  
                }  
                a[i]=k;  //回到原来的状态
            }  
        }  
    }  
    return 0;  
}  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值