经典文献阅读之--SLIM(城市环境可扩展和轻量级的长期LiDAR建图系统)

0. 简介

城市环境中的地图构建有着丰富的历史,早在 DARPA 城市挑战赛的自主车辆开发时期就已开始。随着 LiDAR SLAM 技术的进步,移动机器人现在已经能够胜任结构化的城市区域中的地图构建任务。然而,在城市环境中将现有系统部署到移动机器人进行长期使用仍然存在以下几个挑战

  1. LiDAR 传感器直接生成 3D 点云。传统的制图系统使用稠密表示(如点、体素和网格)来实现准确的机器人姿态估计和 LiDAR 制图。虽然这些方法可以实现精确的环境建模,但对于在大规模城市环境中运行的资源受限平台而言,这些方法在实际应用中并不具备内存效率。

  2. 高层或隐式表示(如对象或神经函数)提供了内存效率,但可能无法确保城市环境中精准定位所需的精度。在机器人应用中,重用生成的地图至关重要,这使得在 LiDAR 制图系统中整合低级几何信息变得不可或缺。

  3. 许多现有的 LiDAR 制图系统的限制在于它们是为单次会话设计的,未考虑长期部署。对于多会话 LiDAR 制图系统,随着会话数量的增加,实现全局合并多个地图会话并保持局部地图的一致性和大小是可扩展性的关键。

通常,城市环境具有结构化和手工部署的特征,例如电线杆和交通标志,为长期地图构建提供了强大的先验知识。类似的结构也可以在室内环境中找到。本文介绍的SLIM[1]设计了一种可扩展且轻量级的 LiDAR 制图系统(SLIM),利用了城市环境的结构化特征。图 1 展示了 SLIM 生成的地图与广泛使用的点云地图的对比。代码已经在Github上了

1. 主要贡献

主要贡献如下:

  1. 提出将线和面参数化为内存效率高的表示,该表示可以编码几何信息,也适用于地图合并。

  2. 设计了姿态图优化(PGO)和捆绑调整(BA),以粗到细的方式优化 LiDAR 制图。

  3. 引入了一种基于地图的非线性图稀疏化方法,以在会话增加时管理地图大小,确保长期维护的可扩展性。

  4. 在三个不同的多会话数据集上验证了 SLIM 系统,从精度、轻量化和可扩展性等方面进行了测试。

提出的 SLIM 系统是之前工作的扩展版本。这个增强版在三个关键方面引入了改进:

  1. 不再依赖于语义信息进行线和面的提取,而只关注几何特征。从视觉感知中获得的额外语义信息可以在实践中增强 SLIM 的性能。

  2. 地图合并模块经过重新设计,以提高城市地图构建的鲁棒性和效率。

  3. 引入了一种基于地图的非线性因子恢复方法,以确保系统的可扩展性。

2. 具体方法

2.1 系统概述

系统的工作流程如图2所示。给定顺序的激光雷达(LiDAR)扫描输入,SLIM 首先根据几何特性将原始 LiDAR 点云转换为线和面的表示。这些参数化的表示紧凑且易于后续任务处理。线和面通过 LiDAR 里程计或其他机载里程计积累,形成轻量级地图中的特征点。为了合并多次地图,SLIM 利用位置识别和局部位姿估计。尽管地图被统一在同一坐标系中,来自里程计的漂移仍然存在。SLIM 通过基于参数化线和面的粗到细的方式来实现地图优化(平滑)。随着地图合并次数的增加,引入了一种基于地图的非线性因子恢复,以保持位姿数量的可管理性。上述所有操作使得多次 LiDAR 地图的制图流程具有可扩展性。我们在算法1中也对这一流程进行了总结。

值得注意的是,地图特征点仅由参数化的线和面组成,并未在地图中存储任何稠密点云。因此,后端地图优化和维护也利用相同的表示形式。在实验部分,我们验证了这些轻量级表示可以有效支持配备不同 3D LiDAR 传感器的移动机器人在城市环境中的长期地图构建。

3. 地图表示、合并与优化

3.1 地图矢量化:从点云到线和面

  1. 预处理和特征点选择:给定机器人顺序的 LiDAR 扫描数据,应用现有的 LiDAR 里程计方法,例如 LOAM和 KISS-ICP,以获得局部地图和顺序机器人位姿。传感器融合方法也可以作为替代。这些方法提供了稠密点云和带有漂移的机器人位姿,作为 SLIM 系统的输入。通常情况下,机器人或车辆在城市环境中的不同部分运行,对应于不同的局部框架。SLIM 系统的目标是将输入数据转换为单一的全局框架,并以最小的漂移生成一致且轻量级的制图结果。

    城市环境中最常见的物体是建筑物、道路和路边的杆件,这些物体可以分为两类特征:线和面。为了提取线特征,首先将点划分为各自的扫描线,以恢复原始的扫描模式。重要的是,同一扫描线上的点按照扫描时间顺序排列。随后,计算扫描线上某个点的双边距离差异。基于两侧的距离差异值,使用阈值将点标记为负梯度点、正梯度点和两侧都有梯度的点。接着,识别出距离足够近的相邻负梯度点和正梯度点对。通过提取它们之间的点以及两侧有梯度的点,可以获得一个候选点集。最后,使用聚类算法和 RANSAC 线拟合方法来优化这个候选点集,最终获得多个线段。

    面点基于点的局部结构进行选择。首先,使用 TRAVEL 算法对点云进行地面分割,识别地面和非地面点。其次,对地面和建筑物等非地面区域应用平面拟合方法,利用局部表面法线和曲率信息来提取平面特征点。最终,这些线和面特征通过 LiDAR 里程计或其他机载里程计积累,形成轻量级的地图特征。


3.2 全局地图合并

地图合并策略:在此,局部地图被参数化为来自多次会话数据的线和面。将这些局部地图称为子地图(submaps) { M s i } \{M_{si}\} {Msi}。这些子地图位于不同的位置,并使用不同的坐标系。因此,全局地图合并过程的目标是将这些子地图对齐到一个共同的坐标系中,合并和消除冗余地标,并生成一个全局一致的地图,作为后续合并的基础地图。将合并后的全局地图称为基础地图(base map) M b M_b Mb。在合并过程的开始阶段,可以选择任意一个子地图作为初始基础地图。

典型的全局地图合并方法首先将完整的激光雷达扫描转换为手工制作的或基于学习的全局描述符,以进行地点检索。随后,点云配准对于相对变换估计是不可或缺的。现有的方法通常需要大量的原始信息,例如原始点云或嵌入特征图,从而导致特征学习和传输方面的数据需求非常高。此外,这些方法大多专注于扫描到扫描的地点检索,而不是利用多帧信息来表示一个地点。基于单次扫描的方法对位姿变化更为敏感,在地图合并过程中缺乏鲁棒性。

在本研究中,提出了直接对子地图进行全局配准以实现地图合并的方法,而无需地点识别。具体而言,采用了之前的工作 G3Reg,用于快速和鲁棒的配准。G3Reg 利用图论,特别是最大团(Maximum Clique)算法,来修剪对应关系中的异常值,其中地标对应关系被视为图的节点。然而,每个子地图中包含了大量地标,解决如此大型图的最大团问题在计算上是不可行的,并且会导致极长的处理时间。

为了解决这个问题,设计了一个两步法来减少问题规模。首先将位于同一无限平面上的平面地标聚类为单个平面,特别是那些在大型建筑物和道路表面上的地标。线地标保持不变。其次,沿着机器人轨迹将基础地图划分为块(blocks) G b p G_{bp} Gbp,并将子地图划分为块 G s q G_{sq} Gsq,而不是直接将子地图与基础地图进行匹配。每个块包含一个主关键帧以及其周围的一组地标。这两个步骤通过减少块中节点的数量,使地图结构更加紧凑,从而加速多会话地图合并中的块配准过程。

成对块的全局配准:正确的对应关系估计对于全局块配准至关重要。G3Reg 提出了基于地标的高斯椭球模型(Gaussian ellipsoid models),该模型由质心和伪协方差矩阵表示的不确定性组成,用于构建平移和旋转不变的度量(TRIMs)。这些 TRIMs 随后被用于构建一个兼容性图,以修剪对应关系中的异常值。

在本研究中,基本表示是参数化的无限线和面,而不是欧几里得空间中的质心建模。这样的参数化形式不能直接用于构建原始 G3Reg 中所用的 TRIMs 来进行异常值修剪。为了解决这个问题,引入 Grassmannian 度量来计算 TRIMs,并使用成对兼容性测试来确定两个对应关系是否兼容。具体来说,线和面可以被建模为 k k k-维子空间,其中线属于一维子空间,面属于二维子空间。它们的 Grassmannian 坐标 Y Y Y表示为:

在这里插入图片描述
在这里插入图片描述

利用修剪后的对应关系结果,可以建立一种使用线和面的混合配准来估计块之间的相对位姿,其公式如下:


在这里插入图片描述

3.3 地图优化

位姿图优化(PGO):对于剔除后的相对位姿集合 ,可以构建一个回环残差,公式如下:


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

至此,所有多会话机器人的位姿和地标都已被合并并联合优化。值得注意的是,这两个模块仅使用参数化线和面。使用这种轻量级表示可以确保内存效率,同时保持制图精度。实验部分将分别验证所提出模块在精度、效率和跨不同数据集的通用性方面的优势。

4. 基于地图的非线性因子恢复

随着时间的推移,优化的维度会增加,这是长期制图的一个典型问题。这种增长导致了优化的计算成本显著增加。本方法介绍一种基于地图的非线性因子恢复(NFR)方法,该方法旨在随着会话的增加保持稀疏化的位姿和不变的地标。具体而言,目标是对冗余关键帧位姿进行边缘化,同时保留原始的捆绑调整(BA)问题结构。所提出的基于地图的 NFR 方法在保证全局一致性的同时,控制了长期制图的计算需求

4.1 动机与问题表述

在经典的 SLAM 系统中,边缘化是一项关键技术,旨在修剪图并保留先验信息,同时不破坏系统的可观测性。它的理论基础是舒尔补(Schur Complement),其中舒尔补通常在 Hessian 矩阵中引入非零块的“填充”,这会显著降低非线性优化的速度。非线性因子恢复(NFR) 通过恢复更少的因子来近似原始问题的新分布。这使得即使在大规模和长期操作中,也能保持较小的计算开销。NFR 问题的数学描述如下:
在这里插入图片描述
在这里插入图片描述

图6展示了NFR及其对应图拓扑结构的图形化说明。基于地图的NFR包含两个主要步骤:首先,通过移除关键帧从原始拓扑中重建新的拓扑;其次,计算这些残差的信息矩阵,这些信息矩阵作为KLD问题的解,如公式(18)所述。这些步骤将在接下来的部分中详细说明。

4.2 两步边缘化

拓扑结构重建:首先,需要选择关键帧进行边缘化,以获得新的因子图拓扑结构。应用一种基于密度的降采样方法,在因子图中移除一些关键帧位姿。具体而言,使用距离阈值来控制关键帧位姿的密度。为了确保方程(17)中雅可比矩阵的可逆性,提出以下连通性规范:

  1. 每个地标仅连接到最近的关键帧位姿。

  2. 所有保留的关键帧通过最小生成树连接,并保留 个关键帧到关键帧的残差,其中 是保留的关键帧数。

  3. 仅需要一个唯一的先验关键帧残差。

重构后的雅可比矩阵始终是方阵且可逆,满足方程(18)的要求。这是由于以下两个原因:所有关键帧到地标残差的维度始终等于地标状态的维度;关键帧到关键帧残差的维度与先验关键帧位姿残差的维度之和恰好等于保留的关键帧状态的维度。

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值