《信号与系统》(吴京)部分课后习题答案与解析
本科期间上了《信号与系统》这门课,使用了下图这本书。这里收集整理了老师上课布置的习题,并给出详细解答。希望能给上这门课的学生和考国防科大电子科学专业研究生的同学一点帮助。
第一章
题
1.1 已知系统的输入、输出和初始状态的关系式如下,它们是否线性系统,为什么?
其中和 y ( t 0 ) y(t_{0}) y(t0) 分别代表连续系统和离散系统 y ( n 0 ) y(n_{0}) y(n0)初始观察时刻 t 0 t_{0} t0 和 n 0 n_{0} n0 的唯一的初始状态,
f ( t ) f(t) f(t) 和 x ( n ) x(n) x(n)分别代表连续系统和离散系统的输入, y ( t ) y(t) y(t) 和 y ( n ) y(n) y(n)分别代表连续系统和离散系统的输出。
(1) y ( t ) = y ( t 0 ) + f ( t ) y(t)=y(t_{0})+f(t) y(t)=y(t0)+f(t)
(3) y ( t ) = y ( t 0 ) + f 2 ( t ) y(t)=y(t_{0})+f^{2}(t) y(t)=y(t0)+f2(t)
(5) y ( t ) = d d t [ f ( t ) ] y(t)=\frac{d}{dt}[f(t)] y(t)=dtd[f(t)]
(7) y ( n ) = y ( n 0 ) + n x ( n ) y(n)=y(n_{0})+nx(n) y(n)=y(n0)+nx(n)
(9) y ( n ) = x 2 ( n ) y(n)=x^{2}(n) y(n)=x2(n)
(11) y ( n ) = sin ( n π 2 ) x ( n ) y(n)=\sin(\frac{n \pi}{2})x(n) y(n)=sin(2nπ)x(n)
1.2 已知系统的输入和输出关系式如下,它们是否时不变系统,为什么?
其中 f ( t ) f(t) f(t)、 x ( n ) x(n) x(n)、 y ( t ) y(t) y(t)、 y ( n ) y(n) y(n)的意义同题1.1。
(2) y ( t ) = f ( t ) ⋅ f ( t − 1 ) y(t)=f(t)\cdot f(t-1) y(t)=f(t)⋅f(t−1)
(4) y ( t ) = ∫ − ∞ t f ( τ ) d τ y(t)=\int_{-\infty}^{t}f(\tau)d\tau y(t)=∫−∞tf(τ)dτ
(6) y ( t ) = sin ( t ) ⋅ f ( t ) y(t)=\sin(t)\cdot f(t) y(t)=sin(t)⋅f(t)
(8) y ( n ) = x ( n ) ⋅ x ( n − 1 ) y(n)=x(n)\cdot x(n-1) y(n)=x(n)⋅x(n−1)
(10) y ( n ) = ∣ x ( n ) − x ( n − 1 ) ∣ y(n)=|x(n)-x(n-1)| y(n)=∣x(n)−x(n−1)∣
(12) y ( n ) = − n x ( n ) y(n)=-nx(n) y(n)=−nx(n)
补充: y ( t ) = ∫ − ∞ 2 t y(t)=\int_{-\infty}^{2t} y(t)=∫−∞2t
1.3 已知系统输入输出关系式如下,它们是否因果系统,为什么?
其中 f ( t ) f(t) f(t)、 x ( n ) x(n) x(n)、 y ( t ) y(t) y(t)、 y ( n ) y(n) y(n) 意义同题1.1。
(1) y ( t ) = e f ( t ) y(t)=e^{f(t)} y(t)=ef(t)
(2) y ( t ) = f ( − t ) y(t)=f(-t) y(t)=f(−t)
(3) y ( t ) = f ( t − c ) y(t)=f(t-c) y(t)=f(t−c), c c c为常数
(4) y ( n ) = ∑ k = n − 2 n + 4 x ( k ) y(n)=\sum_{k=n-2}^{n+4}x(k) y(n)=∑k=n−2n+4x(k)
(5) y ( n ) = x 2 ( n ) y(n)=x^{2}(n) y(n)=x2(n)
(6) y ( n ) = x ( n ) ⋅ x ( n − 2 ) y(n)=x(n)\cdot x(n-2) y(n)=x(n)⋅x(n−2)
1.4 某线性连续系统在相同的初始状态下,当输入为 f ( t ) f(t) f(t)时,全响应为 y ( t ) = 2 e − t + cos ( 2 t ) y(t)=2e^{-t}+\cos(2t) y(t)=2e−t+cos(2t),
当输入 2 f ( t ) 2f(t) 2f(t)时,全响应 y ( t ) = e − t + 2 cos ( 2 t ) y(t)=e^{-t}+2\cos(2t) y(t)=e−t+2cos(2t).
求在相同的初始条件下,输入为 4 f ( t ) 4f(t) 4f(t)时的全响应
解
1.1 解: (1)、(5)、(6)、(7)、(11)、(12)线性系统;
(3) 因其零状态响应 y z s ( t ) = f 2 ( t ) y_{zs}(t)=f^{2}(t) yzs(t)=f2(t)非线性;
(9) 因其零状态响应 y z s ( n ) = x 2 ( n ) y_{zs}(n)=x^{2}(n) yzs(n)=x2(n)。
1.2 解: (5)、(6)、(9)、(12)是时变系统;
(5) ∵ f ( t − t 0 ) → t f ( t − t 0 ) ≠ y ( t − t 0 ) = ( t − t 0 ) f ( t − t 0 ) \because f(t-t_{0}) \to tf(t-t_{0}) \ne y(t-t_{0})=(t-t_{0})f(t-t_{0}) ∵f(t−t0)→tf(t−t0)=y(t−t0)=(t−t0)f(t−t0)
(6) ∵ f ( t − t 0 ) → sin t f ( t − t 0 ) ≠ y ( t − t 0 ) = sin ( t − t 0 ) f ( t − t 0 ) \because f(t-t_{0}) \to \sin tf(t-t_{0}) \ne y(t-t_{0})=\sin(t-t_{0})f(t-t_{0}) ∵f(t−t0)→sintf(t−t0)=y(t−t0)=sin(t−t0)f(t−t0)
(9) ∵ x ( n − n 0 ) → sin n π 2 x ( n − n 0 ) ≠ y ( n − n 0 ) \because x(n-n_{0}) \to \sin \frac{n\pi}{2}x(n-n_{0}) \ne y(n-n_{0}) ∵x(n−n0)→sin2nπx(n−n0)=y(n−n0)
(12) ∵ x ( n − n 0 ) → − n x ( n − n 0 ) ≠ y ( n − n 0 ) \because x(n-n_{0}) \to -nx(n-n_{0}) \ne y(n-n_{0}) ∵x(n−n0)→−nx(n−n0)=y(n−n0)
补充题解答:时变系统。 ∵ f ( t − t 0 ) → ∫ − ∞ 2 t − t 0 f ( τ ) d τ ≠ y ( t − t 0 ) = ∫ − ∞ 2 ( t − t 0 ) f ( τ ) d τ \because f(t-t_{0}) \to \int_{-\infty}^{2t-t_{0}}f(\tau)d\tau \ne y(t-t_{0})=\int_{-\infty}^{2(t-t_{0})}f(\tau)d\tau ∵f(t−t0)→∫−∞2t−t0f(τ)dτ=y(t−t0)=∫−∞2(t−t0)f(τ)dτ
1.3 解:(2)、(4)、(3)当 c < 0 c<0 c<0时 为非因果系统。
1.4 解: f ( t ) , y ( 0 ) → y ( t ) = 2 e − t + cos ( 2 t ) = y z s ( t ) + y z i ( t ) f(t), y(0) \to y(t)=2e^{-t}+\cos(2t)=y_{zs}(t)+y_{zi}(t) f(t),y(0)→y(t)=2e−t+cos(2t)=yzs(t)+yzi(t)
2 f ( t ) , y ( 0 ) → y ( t ) = e − t + 2 cos ( 2 t ) = 2 y z s ( t ) + y z i ( t ) 2f(t), y(0) \to y(t)=e^{-t}+2\cos(2t)=2y_{zs}(t)+y_{zi}(t) 2f(t),y(0)→y(t)=e−t+2cos(2t)=2yzs(t)+yzi(t)
f ( t ) , y ( 0 ) = 0 → y z s ( t ) = cos ( 2 t ) − e − t f(t), y(0)=0 \to y_{zs}(t)=\cos(2t)-e^{-t} f(t),y(0)=0→yzs(t)=cos(2t)−e−t
∴ f ( t ) = 0 , y ( 0 ) → y z i ( t ) = 3 e − t \therefore f(t)=0, y(0) \to y_{zi}(t)=3e^{-t} ∴f(t)=0,y(0)→yzi(t)=3e−t
∴ 4 f ( t ) , y ( 0 ) → y ( t ) = 4 y z s ( t ) + y z i ( t ) = 4 cos ( 2 t ) − e − t \therefore 4f(t), y(0) \to y(t)=4y_{zs}(t)+y_{zi}(t)=4\cos(2t)-e^{-t} ∴4f(t),y(0)→y(t)=4yzs(t)+yzi(t)=4cos(2t)−e−t