《信号与系统》(吴京)部分课后习题答案与解析——第一章

《信号与系统》(吴京)部分课后习题答案与解析

本科期间上了《信号与系统》这门课,使用了下图这本书。这里收集整理了老师上课布置的习题,并给出详细解答。希望能给上这门课的学生和考国防科大电子科学专业研究生的同学一点帮助。

信号与系统-吴京

第一章

1.1 已知系统的输入、输出和初始状态的关系式如下,它们是否线性系统,为什么?

其中和 y ( t 0 ) y(t_{0}) y(t0) 分别代表连续系统和离散系统 y ( n 0 ) y(n_{0}) y(n0)初始观察时刻 t 0 t_{0} t0 n 0 n_{0} n0 的唯一的初始状态,

f ( t ) f(t) f(t) x ( n ) x(n) x(n)分别代表连续系统和离散系统的输入, y ( t ) y(t) y(t) y ( n ) y(n) y(n)分别代表连续系统和离散系统的输出。

(1) y ( t ) = y ( t 0 ) + f ( t ) y(t)=y(t_{0})+f(t) y(t)=y(t0)+f(t)

(3) y ( t ) = y ( t 0 ) + f 2 ( t ) y(t)=y(t_{0})+f^{2}(t) y(t)=y(t0)+f2(t)

(5) y ( t ) = d d t [ f ( t ) ] y(t)=\frac{d}{dt}[f(t)] y(t)=dtd[f(t)]

(7) y ( n ) = y ( n 0 ) + n x ( n ) y(n)=y(n_{0})+nx(n) y(n)=y(n0)+nx(n)

(9) y ( n ) = x 2 ( n ) y(n)=x^{2}(n) y(n)=x2(n)

(11) y ( n ) = sin ⁡ ( n π 2 ) x ( n ) y(n)=\sin(\frac{n \pi}{2})x(n) y(n)=sin(2)x(n)

1.2 已知系统的输入和输出关系式如下,它们是否时不变系统,为什么?

其中 f ( t ) f(t) f(t) x ( n ) x(n) x(n) y ( t ) y(t) y(t) y ( n ) y(n) y(n)的意义同题1.1。

(2) y ( t ) = f ( t ) ⋅ f ( t − 1 ) y(t)=f(t)\cdot f(t-1) y(t)=f(t)f(t1)

(4) y ( t ) = ∫ − ∞ t f ( τ ) d τ y(t)=\int_{-\infty}^{t}f(\tau)d\tau y(t)=tf(τ)dτ

(6) y ( t ) = sin ⁡ ( t ) ⋅ f ( t ) y(t)=\sin(t)\cdot f(t) y(t)=sin(t)f(t)

(8) y ( n ) = x ( n ) ⋅ x ( n − 1 ) y(n)=x(n)\cdot x(n-1) y(n)=x(n)x(n1)

(10) y ( n ) = ∣ x ( n ) − x ( n − 1 ) ∣ y(n)=|x(n)-x(n-1)| y(n)=x(n)x(n1)

(12) y ( n ) = − n x ( n ) y(n)=-nx(n) y(n)=nx(n)

补充 y ( t ) = ∫ − ∞ 2 t y(t)=\int_{-\infty}^{2t} y(t)=2t

1.3 已知系统输入输出关系式如下,它们是否因果系统,为什么?

其中 f ( t ) f(t) f(t) x ( n ) x(n) x(n) y ( t ) y(t) y(t) y ( n ) y(n) y(n) 意义同题1.1。

(1) y ( t ) = e f ( t ) y(t)=e^{f(t)} y(t)=ef(t)

(2) y ( t ) = f ( − t ) y(t)=f(-t) y(t)=f(t)

(3) y ( t ) = f ( t − c ) y(t)=f(t-c) y(t)=f(tc), c c c为常数

(4) y ( n ) = ∑ k = n − 2 n + 4 x ( k ) y(n)=\sum_{k=n-2}^{n+4}x(k) y(n)=k=n2n+4x(k)

(5) y ( n ) = x 2 ( n ) y(n)=x^{2}(n) y(n)=x2(n)

(6) y ( n ) = x ( n ) ⋅ x ( n − 2 ) y(n)=x(n)\cdot x(n-2) y(n)=x(n)x(n2)

1.4 某线性连续系统在相同的初始状态下,当输入为 f ( t ) f(t) f(t)时,全响应为 y ( t ) = 2 e − t + cos ⁡ ( 2 t ) y(t)=2e^{-t}+\cos(2t) y(t)=2et+cos(2t),

当输入 2 f ( t ) 2f(t) 2f(t)时,全响应 y ( t ) = e − t + 2 cos ⁡ ( 2 t ) y(t)=e^{-t}+2\cos(2t) y(t)=et+2cos(2t).

求在相同的初始条件下,输入为 4 f ( t ) 4f(t) 4f(t)时的全响应

1.1 解: (1)、(5)、(6)、(7)、(11)、(12)线性系统;

(3) 因其零状态响应 y z s ( t ) = f 2 ( t ) y_{zs}(t)=f^{2}(t) yzs(t)=f2(t)非线性;

(9) 因其零状态响应 y z s ( n ) = x 2 ( n ) y_{zs}(n)=x^{2}(n) yzs(n)=x2(n)

1.2 解: (5)、(6)、(9)、(12)是时变系统;

(5) ∵ f ( t − t 0 ) → t f ( t − t 0 ) ≠ y ( t − t 0 ) = ( t − t 0 ) f ( t − t 0 ) \because f(t-t_{0}) \to tf(t-t_{0}) \ne y(t-t_{0})=(t-t_{0})f(t-t_{0}) f(tt0)tf(tt0)=y(tt0)=(tt0)f(tt0)

(6) ∵ f ( t − t 0 ) → sin ⁡ t f ( t − t 0 ) ≠ y ( t − t 0 ) = sin ⁡ ( t − t 0 ) f ( t − t 0 ) \because f(t-t_{0}) \to \sin tf(t-t_{0}) \ne y(t-t_{0})=\sin(t-t_{0})f(t-t_{0}) f(tt0)sintf(tt0)=y(tt0)=sin(tt0)f(tt0)

(9) ∵ x ( n − n 0 ) → sin ⁡ n π 2 x ( n − n 0 ) ≠ y ( n − n 0 ) \because x(n-n_{0}) \to \sin \frac{n\pi}{2}x(n-n_{0}) \ne y(n-n_{0}) x(nn0)sin2x(nn0)=y(nn0)

(12) ∵ x ( n − n 0 ) → − n x ( n − n 0 ) ≠ y ( n − n 0 ) \because x(n-n_{0}) \to -nx(n-n_{0}) \ne y(n-n_{0}) x(nn0)nx(nn0)=y(nn0)

补充题解答:时变系统。 ∵ f ( t − t 0 ) → ∫ − ∞ 2 t − t 0 f ( τ ) d τ ≠ y ( t − t 0 ) = ∫ − ∞ 2 ( t − t 0 ) f ( τ ) d τ \because f(t-t_{0}) \to \int_{-\infty}^{2t-t_{0}}f(\tau)d\tau \ne y(t-t_{0})=\int_{-\infty}^{2(t-t_{0})}f(\tau)d\tau f(tt0)2tt0f(τ)dτ=y(tt0)=2(tt0)f(τ)dτ

1.3 解:(2)、(4)、(3)当 c < 0 c<0 c<0时 为非因果系统。

1.4 解: f ( t ) , y ( 0 ) → y ( t ) = 2 e − t + cos ⁡ ( 2 t ) = y z s ( t ) + y z i ( t ) f(t), y(0) \to y(t)=2e^{-t}+\cos(2t)=y_{zs}(t)+y_{zi}(t) f(t),y(0)y(t)=2et+cos(2t)=yzs(t)+yzi(t)

2 f ( t ) , y ( 0 ) → y ( t ) = e − t + 2 cos ⁡ ( 2 t ) = 2 y z s ( t ) + y z i ( t ) 2f(t), y(0) \to y(t)=e^{-t}+2\cos(2t)=2y_{zs}(t)+y_{zi}(t) 2f(t),y(0)y(t)=et+2cos(2t)=2yzs(t)+yzi(t)

f ( t ) , y ( 0 ) = 0 → y z s ( t ) = cos ⁡ ( 2 t ) − e − t f(t), y(0)=0 \to y_{zs}(t)=\cos(2t)-e^{-t} f(t),y(0)=0yzs(t)=cos(2t)et

∴ f ( t ) = 0 , y ( 0 ) → y z i ( t ) = 3 e − t \therefore f(t)=0, y(0) \to y_{zi}(t)=3e^{-t} f(t)=0,y(0)yzi(t)=3et

∴ 4 f ( t ) , y ( 0 ) → y ( t ) = 4 y z s ( t ) + y z i ( t ) = 4 cos ⁡ ( 2 t ) − e − t \therefore 4f(t), y(0) \to y(t)=4y_{zs}(t)+y_{zi}(t)=4\cos(2t)-e^{-t} 4f(t),y(0)y(t)=4yzs(t)+yzi(t)=4cos(2t)et

  • 9
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小涛29

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值