自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(53)
  • 收藏
  • 关注

原创 零基础入门深度学习(四):卷积神经网络基础之池化和Relu

课程名称 | 零基础入门深度学习授课讲师 | 孙高峰 百度深度学习技术平台部资深研发工程师授课时间 | 每周二、周四晚20:00-21:00编辑整理 | 孙高峰内容来源 | 百度飞桨深度学习集训营出品平台 | 百度飞桨01导读本课程是百度官方开设的零基础入门深度学习课程,主要面向没有深度学习技术基础或者基础薄弱的同学,帮助大家在深度学习领域实现从0到1...

2020-01-06 20:01:55 486

原创 零基础入门深度学习(三):卷积神经网络基础之初识卷积

课程名称 | 零基础入门深度学习授课讲师 | 孙高峰 百度深度学习技术平台部资深研发工程师授课时间 | 每周二、周四晚20:00-21:00编辑整理 | 孙高峰内容来源 | 百度飞桨深度学习集训营出品平台 | 百度飞桨01导读本课程是百度官方开设的零基础入门深度学习课程,主要面向没有深度学习技术基础或者基础薄弱的同学,帮助大家在深度学习领域实现从0到1+的跨...

2020-01-06 20:01:02 606

原创 零基础入门深度学习(二):用一个案例掌握深度学习方法

授课讲师|毕然百度深度学习技术平台部主任架构师授课时间|每周二、周四晚20:00-21:00编辑整理|刘威威内容来源|百度飞桨深度学习集训营0导读本课程是百度官方开设的零基础入门深度学习课程,主要面向没有深度学习技术基础或者基础薄弱的同学,帮助大家在深度学习领域实现从0到1+的跨越。从本课程中,你将学习到: 深度学习基础知识 ...

2020-01-06 20:00:07 403

原创 BERT和ERNIE谁更强?这里有一份4大场景的细致评测

BERT和ERNIE,NLP领域近来最受关注的2大模型究竟怎么样?刚刚有人实测比拼了一下,结果在中文语言环境下,结果令人意外又惊喜。具体详情究竟如何?不妨一起围观下这篇技术评测。1. 写在前面随着2018年ELMo、BERT等模型的发布,NLP领域终于进入了“大力出奇迹”的时代。采用大规模语料上进行无监督预训练的深层模型,在下游任务数据上微调一下,即可达到很好的效果。曾经需要反复调...

2020-01-02 00:10:10 225

原创 飞桨十大中文NLP开源工具详解

PaddleNLP是基于飞桨(PaddlePaddle)开发的工业级中文NLP开源工具与预训练模型集,将自然语言处理领域的多种模型用一套共享骨架代码实现,可大大减少开发者在开发过程中的重复工作。PaddleNLP提供依托于百度百亿级大数据的预训练模型,适应全面丰富的 NLP任务,方便开发者灵活插拔尝试多种网络结构,并且让应用最快速达到工业级效果。下面小编就带你一一了解PaddleNLP支持的...

2020-01-02 00:07:05 215

原创 强烈推荐 | 基于飞桨的五大目标检测模型实战详解

机器视觉领域的核心问题之一就是目标检测(object detection),它的任务是找出图像当中所有感兴趣的目标(物体),确定其位置和大小。对于人类来说,目标检测是一个非常简单的任务。然而,计算机能够“看到”的是图像被编码之后的数字,很难解图像或是视频帧中出现了人或是物体这样的高层语义概念,也就更加难以定位目标出现在图像中哪个区域。与此同时,由于目标会出现在图像或是视频帧中的任何位置,...

2020-01-02 00:06:21 245

原创 飞桨万能转换小工具X2Paddle,教你玩转模型迁移

百度推出飞桨(PaddlePaddle)后,不少开发者开始转向国内的深度学习框架。但是从代码的转移谈何容易,之前的工作重写一遍不太现实,成千上万行代码的手工转换等于是在做一次二次开发。现在,有个好消息:无论Caffe、TensorFlow、ONNX都可以轻松迁移到飞桨平台上。虽然目前还不直接迁移PyTorch模型,但PyTorch本身支持导出为ONNX模型,等于间接对该平台提供了支持。然而...

2019-12-30 20:45:04 281

原创 基于飞桨PaddlePaddle的语义角色标注任务全解析

自然语言处理中的自然语言句子级分析技术,可以大致分为词法分析、句法分析、语义分析三个层面。 词法分析:第一层面的词法分析 (lexical analysis) 包括汉语分词和词性标注两部分。 句法分析:对输入的文本句子进行分析以得到句子的句法结构的处理过程。 语义分析 (semantic parsing):语义分析的最终目的是 理解句子表达的真实语义。语义角...

2019-12-30 20:43:51 274

原创 飞桨带你使用度量学习,提升人脸识别准确率

小测试想必在日常生活中,我们总会有一种感觉,身边认识的一些人,明明没有任何血缘关系,但是长得却可能很像,尤其对于脸盲的同学,真的是傻傻分不清楚。我们这里有一组题,来测测大家的人脸识别水平。先来一道简单的,【人脸识别四级】水平的,下面两位男明星分别是谁?很简单是吧?答案应该不需要公布了应该难不倒大家趁热打铁,我们再来一道【人脸识别六...

2019-12-30 20:43:18 392

原创 业界首个视频识别与定位工具集PaddleVideo重磅更新

飞桨 (PaddlePaddle) 致力于让深度学习技术的创新与应用更简单。7 月初,随着 Paddle Fluid 1.5 版本的发布,国内业界首个视频识别与定位工具集 PaddleVideo 也迎来了重磅更新。PaddleVideo 在实际工业界可以形成很多具体应用,包括:视频精彩片段预测、关键镜头定位、视频剪辑等任务,例如定位 NBA 篮球赛视频中扣篮镜头,电视剧中的武打镜头等。如下图所...

2019-12-26 15:23:15 185

原创 更快更简单|飞桨PaddlePaddle单机训练速度优化最佳实践

导读:飞桨(PaddlePaddle)致力于让深度学习技术的创新与应用更简单。在单机训练速度方面,通过高并行、低开销的异步执行策略和高效率的核心算子,优化静态图训练性能,在Paddle Fluid v1.5.0的基准测试中,在7个典型模型上进行了测试(图像领域5个,NLP领域2个),其中5个模型的速度显著优于对标框架(大于15%),2个模型与对标框架持平(5%之内)。如果想让单机训练速度更快,可以...

2019-12-26 15:22:13 1035

原创 百度助力数据挖掘世界杯KDD Cup 历史性革新

8月6日,一年一度的KDD(国际数据挖掘与知识发现)大会召开,这是数据挖掘领域国际最高级别会议,而其旗下赛事KDD Cup 被称为数据挖掘领域的“世界杯”。今年,KDD Cup 在赛制上进行了诸多创新,百度公司赞助并出题的常规机器学习竞赛(Regular ML Track)不仅刷新了参赛人数记录,也首次设置开放研究赛题,中国军团也不负众望,斩获大部分重量级奖项。同时,百度也是赛事的钻石赞助商,助推...

2019-12-24 15:08:14 109

原创 下一幕,边缘! 百度飞桨携手英伟达EGX打造边缘AI技术底座

AI的下一个机遇正在边缘爆发。12月18日,英伟达GTC CHINA 2019这一年度AI盛会于苏州正式开幕,英伟达创始人CEO黄仁勋到场发表演讲,强调了边缘智能新机遇。会议中,百度开源深度学习平台飞桨宣布已适配NVIDIA EGX边缘计算平台,飞桨深度学习推理模型可直接在EGX平台上运行,并提供端云协同解决方案。双方强强联手,为边缘AI落地打造了坚实技术底座。让 AI 在数据产生的地...

2019-12-24 15:03:32 113

原创 自动分类打标签!飞桨TSM模型帮你做视频理解

导读:目前互联网视频数据日益增多,用户观看短视频、小视频的时长也迅速增长,如何对海量的视频资源快速准确地分析、处理、归类是一个亟待解决的问题。视频理解技术可以多维度解析视频内容,理解视频语义,自动分类打标签,极大节省人工审核效率,节约成本;同时实现精准用户推荐,提升体验效果。1. 视频理解之TSM谈到视频理解,不得不给大家介绍一下新鲜出炉的视频理解技术之一:TSM(...

2019-12-19 16:42:19 669

原创 视频分类哪家强?高效NeXtVLAD在飞桨!

导读:昨天的TSM文章发布之后受到广大读者的好评。读者在后台留言想要了解更多视频分类相关的技术,看来视频分类问题真的很热门,使用深度学习的方法大规模进行视频分类逐渐成为了趋势。除了TSM之外,目前深度学习领域还有一系列优秀的视频分类模型,我们会慢慢为大家介绍。今天,我们将为大家介绍由飞桨官方复现并开源的另一个重要模型:NeXtVLAD。1.视频分类概述视频分类是指给定一...

2019-12-19 16:41:52 552 1

原创 信息检索&FAQ硬核技术!飞桨开源百度自研SimNet模型

导读:飞桨PaddlePaddle致力于让深度学习技术的创新与应用更简单。飞桨开源的百度自研SimNet-BOW-Pairwise语义匹配模型,在真实的FAQ问答场景中,比其他基于字面的相似度方法AUC提升了5%以上。在公开语义匹配数据集(LCQMC)进行评测准确率也达到了0.7532,性能超越同等复杂的CBOW基线模型。SimNet 显著改善了长冷 query 的搜索效果,提升了搜索智能化的水平...

2019-12-19 16:41:09 276

原创 用飞桨做命名实体识别,手把手教你实现经典模型 BiGRU + CRF

命名实体识别(Named Entity Recognition,NER)是 NLP 几个经典任务之一,通俗易懂的来说,就是从一段文本中抽取出需求的关键词,如地名,人名等。如上图所示,Google、IBM、Baidu 这些都是企业名、Chinese、U.S. 都是地名。就科学研究来说,命名实体是非常通用的技术,类似任务型对话中的槽位识别(Slot Filling)、基础语言学中的...

2019-12-19 12:21:08 206

原创 超火的个性化推荐你再不会就OUT啦,让飞桨手把手来教你

导读:随着电子商务规模的不断扩大,电商平台的商品数量和种类呈爆发式增长,用户往往需要花费大量的时间才能找到自己想买的商品,这就是信息超载问题。为了解决这个难题,“个性化推荐”技术应运而生,有效地节约用户时间,提升电商成单率。本篇文章中,将为大家介绍个性化推荐系统的实现方法,并送上一份基于飞桨(PaddlePaddle)实现个性化推荐的代码教程。1. 个性化推荐概述日常生...

2019-12-19 12:19:32 290

原创 用飞桨做命名实体识别,手把手教你实现经典模型 BiGRU + CRF

命名实体识别(Named Entity Recognition,NER)是 NLP 几个经典任务之一,通俗易懂的来说,就是从一段文本中抽取出需求的关键词,如地名,人名等。如上图所示,Google、IBM、Baidu 这些都是企业名、Chinese、U.S. 都是地名。就科学研究来说,命名实体是非常通用的技术,类似任务型对话中的槽位识别(Slot Filling)、基础语言学中的...

2019-12-19 12:18:23 258

原创 想要上手机器翻译?飞桨教你用Transformer 一战到底

导读:机器翻译,能够实现多种语言之间的自动翻译,方便人类的沟通和交流,具有重要的研究和应用价值。Transformer是机器翻译领域的一个经典模型,一经问世,便取得了SOTA效果。本文将带领大家一同探秘Transformer,并送上基于飞桨实现 Transformer的实战教程。1. 机器翻译概述1.1.机器翻译是什么机器翻译(Machine Translation...

2019-12-19 12:17:03 376

原创 超火的个性化推荐你再不会就OUT啦,让飞桨手把手来教你

导读:随着电子商务规模的不断扩大,电商平台的商品数量和种类呈爆发式增长,用户往往需要花费大量的时间才能找到自己想买的商品,这就是信息超载问题。为了解决这个难题,“个性化推荐”技术应运而生,有效地节约用户时间,提升电商成单率。本篇文章中,将为大家介绍个性化推荐系统的实现方法,并送上一份基于飞桨(PaddlePaddle)实现个性化推荐的代码教程。1. 个性化推荐概述日常生...

2019-12-19 12:16:32 434

原创 Paddle Lite特性全解读,多硬件支持、轻量化部署等亮点频现

本文主要由 9 月 21 日在百度科技园举办的 AI 快车道 Paddle Lite 专场的演讲材料整理而成,分别介绍了 Paddle Lite 的性能特性、使用方法、架构设计等,并且提供了完整的使用案例,可供开发者迅速开展应用。在技术革新的浪潮下,智能硬件结合人工智能越来越广地进入了我们的生活。小到智能手机、手表,大到智能交通系统、工业自动检测平台等,无不渗透了人工智能的威力。此外,为...

2019-12-17 19:15:22 147

原创 一文读懂最强中文NLP预训练模型ERNIE

基于飞桨开源的持续学习的语义理解框架ERNIE 2.0,及基于此框架的ERNIE 2.0预训练模型,在共计16个中英文任务上超越了BERT和XLNet, 取得了SOTA效果。本文带你进一步深入了解ERNIE的技术细节。一:ERNIE 简介1.1 简介Google 最近提出的 BERT 模型,通过随机屏蔽15%的字或者word,利用 Transformer 的多层 self-attent...

2019-12-17 19:05:45 962

原创 Paddle Lite特性全解读,多硬件支持、轻量化部署等亮点频现

本文主要由 9 月 21 日在百度科技园举办的 AI 快车道 Paddle Lite 专场的演讲材料整理而成,分别介绍了 Paddle Lite 的性能特性、使用方法、架构设计等,并且提供了完整的使用案例,可供开发者迅速开展应用。在技术革新的浪潮下,智能硬件结合人工智能越来越广地进入了我们的生活。小到智能手机、手表,大到智能交通系统、工业自动检测平台等,无不渗透了人工智能的威力。此外,为...

2019-12-17 18:51:32 114

原创 我用飞桨做了一个AI智能小车

【飞桨开发者说】吴东昱,北京钢铁侠科技深度学习算法工程师,主要研究深度学习、无人驾驶等。我在观察历届智能车竞赛以及教学实验中发现,采用传统视觉算法的视觉智能车只能在特定赛道中行驶,一旦赛道环境改变,必须修改大量的代码才能运行。算法适应性差是制约智能车场景化适配的重要因素。而“AI智能车”借助深度学习算法,通过真实数据采集到模型新训练恰恰能够解决这一问题。基于飞桨平台,我们快速研制...

2019-12-16 16:21:30 155

原创 技术公开课实录:飞桨编程指南和特性解读

导读:飞桨(PaddlePaddle)致力于让深度学习技术的创新与应用更简单。为了让更多的开发者了解飞桨的最近技术进展,特别组织了系列技术稿件,视频来源于2019 Wave Summit秋季深度学习开发者峰会上的技术公开课。本期是由百度飞桨主任架构师为大家带来飞桨编程指南和特性解读,敬请观看。视频关键知识点Notes:01编程指南飞桨核心框架整体分为五个部分:模型...

2019-12-16 16:20:54 213

原创 史上最全解读 | 飞桨模型库重大升级,主流算法模型全覆盖

11 月 5 日,在 Wave Summit+2019 深度学习开发者峰会上,飞桨全新发布和重要升级了最新的 21 项进展,在深度学习开发者社区引起了巨大的反响。很多未到场的开发者觉得遗憾,希望可以了解飞桨发布会背后的更多技术细节,因此我们特别策划了一个系列稿件,分别从核心框架、基础模型库、端到端开发套件、工具组件和服务平台五个层面分别详细解读飞桨的核心技术与最新进展,敬请关注。...

2019-12-16 16:20:23 138

原创 飞桨开源Open Images Dataset V5目标检测比赛最好单模型MSF-DET

目标检测是计算机视觉领域中的核心任务。Open Images Dataset V5(OIDV5)是目前规模最大的目标检测公开数据集[1]。基于飞桨(PaddlePaddle)的PaddleDetection目标模型库[2],百度研发了大规模图像目标检测模型MSF-DET (Multi-Strategy Fused Detection framework),是Google举办的Open Imag...

2019-12-14 00:19:09 256

原创 Paddle Lite新增ARM端图像预处理库

Paddle Lite 是飞桨的端侧推理引擎,具有高性能、多硬件、轻量级的特点,它支持飞桨/TensorFlow/Caffe/ONNX等模型在ARM CPU, Mali GPU, Adreno GPU, Huawei NPU 等多种硬件上的推理部署,性能达到业内领先。目前Paddle Lite保持快速的迭代优化升级,距离正式版2.0.0发布仅一个月,Paddle Lite又一次发布了2.1...

2019-12-14 00:18:29 171

原创 GLUE榜单史上首破90大关!百度预训练模型ERNIE荣登榜首

北京时间12月10日,预训练模型界的“MVP”百度ERNIE再展锋芒,在自然语言处理领域权威数据集GLUE中荣登榜首,并以9个任务平均得分首次突破90大关刷新该榜单历史,超越微软MT-DNN-SMART、谷歌T5、ALBERT等一众国际顶级预训练模型的表现,实力得到极大彰显。本次GLUE榜单第一的含金量可谓十足。众所周知,通用语言理解评估基准GLUE是自然语言处理领域最权威的排行...

2019-12-14 00:17:20 92

原创 PaddlePaddle-GitHub的正确打开姿势

GitHub是一个面向开源及私有软件项目的托管平台、也是项目版本管理工具,会使用它是程序员入门的必备技能。PaddlePaddle也不例外,所有的源码及项目进展都在GitHub上开源公布。但对于刚入门写程序的同学来说,一打开GitHub看起来云里雾里,会有种无从下手的感觉,本文给同学介绍PaddlePaddle在GitHub仓库上的快速上手指南。PaddlePaddle项目介绍登录G...

2019-12-12 16:17:31 179

原创 期盼数月的召唤|PaddlePaddle中文文档利剑来袭

发布三年之后,百度深度学习框架PaddlePaddle有了官方中文版文档。今年11月份,PaddlePaddle的用户们在中文社区论坛以及社群上发出召唤:PaddlePaddle官方是否能搞个PaddlePaddle文档的中文版?这个呼声在PaddlePaddle团队内引起广泛关注,研发团队马上在 GitHub 上展开了一个 PaddlePaddle中文文档项目。两个多月后,官方中文文档终...

2019-12-12 16:17:04 79

原创 首个完整支持中文文档的深度学习框架——百度PaddlePaddle API文档简介

导语PaddlePaddle 作为国内首个深度学习开源平台,在 Fluid v1.0版本提供了稳定且向后兼容的 API及英文说明文档。经过不断的优化与迭代,如今已推出了最新的版本Fluid v1.2。1.2版本中除了在基础框架、预测引擎、模型建设、分布式训练各个方向完成了多项更新,还增加API中文文档,使PaddlePaddle API有了完备的中英双语使用指南。(http:...

2019-12-12 16:16:27 778

原创 基于PaddlePaddle的词向量实战 | 深度学习基础任务教程系列(二)

词向量是自然语言处理中常见的一个操作,是搜索引擎、广告系统、推荐系统等互联网服务背后常见的基础技术。在这些互联网服务里,我们经常要比较两个词或者两段文本之间的相关性。为了做这样的比较,我们往往把词表示成计算机适合处理的方式。最自然的方式莫过于向量空间模型(vector space model)。在这种方式里,每个词被表示成一个实数向量(one-hot vector),其长度为字典大小,每...

2019-12-11 15:52:31 237

原创 基于PaddlePaddle的图像分类实战 | 深度学习基础任务教程系列(一)

图像相比文字能够提供更加生动、容易理解及更具艺术感的信息,图像分类是根据图像的语义信息将不同类别图像区分开来,是图像检测、图像分割、物体跟踪、行为分析等其他高层视觉任务的基础。图像分类在安防、交通、互联网、医学等领域有着广泛的应用。一般来说,图像分类通过手工提取特征或特征学习方法对整个图像进行全部描述,然后使用分类器判别物体类别,因此如何提取图像的特征至关重要。基于深度学习的图像分类方...

2019-12-11 15:52:01 317

原创 如何用Paddle Fluid API搭建一个简单的神经网络?

本文将介绍: Paddle Fluid 有哪些核心概念 如何在 Paddle Fluid 中定义运算过程 如何使用 executor 运行 Paddle Fluid 操作 如何从逻辑层对实际问题建模 如何调用 API(层,数据集,损失函数,优化方法等等) 使用 Tensor 表示数据Paddle Fluid 和其它主流框架一样,使用 Tenso...

2019-12-11 15:51:28 300

原创 一文看懂人机对话

一、人机对话概述人机对话(Human-Machine Conversation)是指让机器理解和运用自然语言实现人机通信的技术,如图1所示。通过人机对话交互,用户可以查询信息,如示例中的第一轮对话,用户查询天气信息;用户也可以和机器进行聊天,如示例中的第二轮对话;用户还可以获取特定服务,如示例中的最后两轮对话,用户获取电影票预定服务。图1 人机对话示例人机对话是人工智能的重要...

2019-12-11 15:50:15 704

原创 神经网络机器翻译技术及应用(下)

何中军,百度机器翻译技术负责人。本文根据作者2018年12月在全球架构师峰会上的特邀报告整理而成。神经网络机器翻译技术及应用(上)篇,我们为大家介绍了神经网络机器翻译的基本原理和挑战,(下)篇继续为大家讲述机器翻译的应用与未来。前面我们讲了机器翻译的原理以及神经网络翻译的发展、以及面临的挑战,我们现在看一看,机器翻译现在有哪些应用?机器翻译在越来越多地帮助和影响我们的生活...

2019-12-11 15:49:25 227

原创 神经网络机器翻译技术及应用(上)

何中军,百度机器翻译技术负责人。本文根据作者2018年12月在全球架构师峰会上的特邀报告整理而成。本报告分为以下5个部分: 机器翻译基本原理,介绍机器翻译原理、主要挑战、发展历程,及评价方法 神经网络机器翻译,介绍近年来迅速崛起的神经网络机器翻译 技术挑战,尽管神经网络机器翻译取得一系列较大的进展,但是仍然面临诸多挑战; 典型应用,机器翻译在生产、...

2019-12-11 15:48:10 1064

原创 基于SSD的目标检测模型

简介Single Shot MultiBox Detector (SSD)是一种单阶段的目标检测器。与两阶段的检测方法不同,单阶段目标检测并不进行区域推荐,而是直接从特征图回归出目标的边界框和分类概率。SSD 运用了这种单阶段检测的思想,并且对其进行改进:在不同尺度的特征图上检测对应尺度的目标。如下图所示,SSD 在六个尺度的特征图上进行了不同层级的预测。每个层级由两个3x3卷积分别对目标类...

2019-12-11 15:46:37 717

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除