题目描述
给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],…,k[m]。请问k[0]xk[1]x…xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
输入描述:
输入一个数n,意义见题面。(2 <= n <= 60)
输出描述:
输出答案
示例1
输入
8
输出
18
思路分析
动态规划的三大步骤,第一步定义数组元素的含义,通常是用一个数组dp来保存历史 数据 ,dp数组元素表示什么含义,即dp[i]代表什么;第二步找出数组元素之间的关系式,就是根据历史数据来推出新的元素值,所以我们要找出数组元素之间的关系式,例如:dp[n]=dp[n-1]+dp[n-2];第三步找到初始值,虽然知道了数组元素之间的关系,我们还需要知道dp数组的初始值,根据初始值向后推导,例如:dp[n]=dp[n-1]+dp[n-2]关系式,我们需要知道初始值dp[0],dp[1]才能够推导出dp[3],有了初始值和元素之间的关系式才能进行完整的推导;
在本题中:
-
第一步定义
dp数组的元素含义,因为是求绳子剪断后长度的最大乘积,所以可以定义dp[i]为绳长为i的最大乘积; -
第二步是找到元素之间的关系,这一步就得靠分析和经验了,我们可以发现绳子剪断后的长度要大于等于
2乘积后的值才会变大,如果当前绳长为i,那么绳子可以剪成的长度范围为[2,3,.....,i-2],其中绳子长度剪成2或者i-2是一样的,就相当于2=8-6或者6=8-2一段为2另外一段肯定为6,所以我们可以把范围缩小到[2,3,.....,i/2],可以得到元素关系式:dp[n]=max(2*dp[n-2],3*dp[n-3],....,n/2*dp[n-n/2]); -
第三步初始化,我们可以发现绳子长度为
2时,至少剪一次,结果就是两段都为1,结果乘积结果为1。绳子长度为3时,可以剪成长度为2和1的两段,结果乘积为2。绳子长度大于4时,此时dp[2]=2,dp[3]=3,这是因为绳子可以剪成长度为2的一段,那么做乘积操作时应该乘以绳子长度2,dp[3]类似的。dp[4]=max(2*dp[2],3*dp[1]),绳长为4的两种方案,方案一两段长度都为2,方案二一段长度为3另外一段长度为1;
代码实现
public int cutRope(int target) {
if (target < 2) {
return 0;
}
if (target == 2) {
return 1;
} else if (target == 3) {
return 2;
}
///dp[i]表示长度为i的乘积最大值
int[] dp = new int[target + 1];
///初始值
dp[1] = 1;
dp[2] = 2;
dp[3] = 3;
int max,product;
for (int i = 4; i <= target; i++) {
max = Integer.MIN_VALUE;
for (int j = 2; j <= i / 2; j++) {
///剪成j,i-j两段,计算这两段的最大乘积,
// dp[j]表示长度为j的最大乘积,dp[i-j]表示长度为i-j的最大乘积
product = dp[j] * dp[i - j];
max = Math.max(product, max);
}
dp[i] = max;
}
return dp[target];
}
欢迎关注南阁公众号

绳子剪切问题动态规划解法
2393

被折叠的 条评论
为什么被折叠?



