剑指 Offer 14- I. 剪绳子(双解法,DP+数论)

题目:

给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m-1] 。请问 k[0]k[1]…*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

示例 1:

输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
提示:

2 <= n <= 58


题解:

1.dp:想象一下,之前的绳子比n小的都已经求出来了,那dp[n]其实有n-1种情况,我们把它分成多段,取第一小段长度为i,剩下的所有段的长度就是n-i,i有1~n-1种长度可选,剩下的所有段的段数可能是大于2的,也可能就是一条长度为n-i的绳子。所以我们取max(n-i,dp[n-i]),dp[n-i]是已经划分好了的(题目要求:请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1)

class Solution {
public:
    int cuttingRope(int n) {
        vector<int>dp(n+1,1);
        
        for(int i = 1;i<=n;i++)
        {
            for(int j = 1;j<i;j++)
            {
                dp[i] = max(dp[i],max(j*dp[i-j],j*(i-j)));
            }
        }
        
        return dp[n];
    }
};

2.数论:
即如果可以拆成3,那么3的n次方是最大的。如果剩下了一个1,那么3x1要换成2x2,否则的话全部都是3就是最好的情况。剩下的是2的话,3x2就不用变了,直接全部乘起来。

class Solution {
public:
    int cuttingRope(int n) {
        if(n <= 3) return n-1;
        
        int cnt = n/3;
        int t = n-cnt*3;
        
        if(t == 0) return pow(3,cnt);
        if(t == 1) return pow(3,cnt-1)*4;
        return pow(3,cnt)*2;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值