题目:
给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m-1] 。请问 k[0]k[1]…*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
提示:
2 <= n <= 58
题解:
1.dp:想象一下,之前的绳子比n小的都已经求出来了,那dp[n]其实有n-1种情况,我们把它分成多段,取第一小段长度为i,剩下的所有段的长度就是n-i,i有1~n-1种长度可选,剩下的所有段的段数可能是大于2的,也可能就是一条长度为n-i的绳子。所以我们取max(n-i,dp[n-i]),dp[n-i]是已经划分好了的(题目要求:请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1))
class Solution {
public:
int cuttingRope(int n) {
vector<int>dp(n+1,1);
for(int i = 1;i<=n;i++)
{
for(int j = 1;j<i;j++)
{
dp[i] = max(dp[i],max(j*dp[i-j],j*(i-j)));
}
}
return dp[n];
}
};
2.数论:
即如果可以拆成3,那么3的n次方是最大的。如果剩下了一个1,那么3x1要换成2x2,否则的话全部都是3就是最好的情况。剩下的是2的话,3x2就不用变了,直接全部乘起来。
class Solution {
public:
int cuttingRope(int n) {
if(n <= 3) return n-1;
int cnt = n/3;
int t = n-cnt*3;
if(t == 0) return pow(3,cnt);
if(t == 1) return pow(3,cnt-1)*4;
return pow(3,cnt)*2;
}
};