(九)分支限界法


       分支限界法(branch and bound method)按广度优先策略搜索问题的解空间树,在搜索过程中,对待处理的节点根据限界函数估算目标函数的可能取值,从中选取使目标函数取得极值(极大或极小)的结点优先进行广度优先搜索,从而不断调整搜索方向,尽快找到问题的解。分支限界法适合求解最优化问题。



 1、分支限界法思想

       上节中回溯法是从根节点出发,按照深度优先的策略搜索问题的解空间树,在搜索过程中,如果某点所代表的部分解不满足约束条件,则对该节点为根的子树进行剪枝;否则继续按照深度优先的策略搜索以该结点为根,当搜索到一个满足的约束条件的叶子结点时,就找到了一个可行解。


       分支限界法首先要确定一个合理的限界函数(bound funciton),并根据限界函数确定目标函数的界[down ,up],按照广度优先策略搜索问题的解空间树,在分直结点上依次扩展该结点的孩子结点,分别估算孩子结点的目标函数可能值,如果某孩子结点的目标函数可能超出目标函数的界,则将其丢弃;否则将其加入待处理结点表(简称PT表),依次从表PT中选取使目标函数取得极值的结点成为当前扩展结点,重复上述过程,直到得到最优解。




2、TSP问题中使用分支限界法

       【TSP问题】:

       TSP问题是指旅行家要旅行n个城市,要求各个城市经理且仅经理依次然后回到出发城市,并要求所走的路程最短。我们以下图的无限图为例,采用分支限界法解决这个问题。




       该无向图对应的代价矩阵如下所示:


       代价矩阵是1到1,1到2,1到3,1到4,1到5距离写在第一行,第二行为2到1,2到2,2到3,2到4,、、、依次


       (1)找到目标函数的界。上界为,采用贪心算法求得上界,从节点1开始到节点3--->5--->4--->2--->1,路径,即为图中红色圈的路径,其路径长度为C=1+2+3+7+3=16。

下界为矩阵中每行中两个最小的相加,所有的行加起来的和的一半。( (3+1)+(3+6)+(1+2)+(3+4)+(2 +3) )/2=14 

所以求得界为[14,16]。

       (2)计算每个节点的限界值。

计算目标函数(限界函数),lb分为三部分,第一部分是经过路径的长度相加的2倍,加上第二部分离着路径首尾节点最近的距离相加(不在已知路径上的),加上第三部分除了路径上节点,矩阵中两个最短的距离相加,最后这三部分和相加,得到的结果除以2便是每个节点的限界值。

       (3)画出PT图。如下所示。





 

              根据上述所述得到最优解1-->3-->5-->4-->2-->1



【C代码】:
//分支限界法
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<queue>
#define INF 100000
using namespace std;
/*  n*n的一个矩阵  */
int n;
int mp[22][22];//最少3个点,最多15个点
/*输入距离矩阵*/
void in()
{
    scanf("%d",&n);
    for(int i=1; i<=n; i++)
    {
        for(int j=1; j<=n; j++)
        {
            if(i==j)
            {
                mp[i][j]=INF;
                continue;
            }
            scanf("%d",&mp[i][j]);
        }
    }
}
struct node
{
    int visp[22];//标记哪些点走了
    int st;//起点
    int st_p;//起点的邻接点
    int ed;//终点
    int ed_p;//终点的邻接点
    int k;//走过的点数
    int sumv;//经过路径的距离
    int lb;//目标函数的值
    bool operator <(const node &p )const
    {
        return lb>p.lb;
    }
};
priority_queue<node> q;
int low,up;
int inq[22];
//确定上界
int dfs(int u,int k,int l)
{
    if(k==n) return l+mp[u][1];
    int minlen=INF , p;
    for(int i=1; i<=n; i++)
    {
        if(inq[i]==0&&minlen>mp[u][i])/*取与所有点的连边中最小的边*/
        {
            minlen=mp[u][i];
            p=i;
        }
    }
    inq[p]=1;
    return dfs(p,k+1,l+minlen);
}
int get_lb(node p)
{
    int ret=p.sumv*2;//路径上的点的距离
    int min1=INF,min2=INF;//起点和终点连出来的边
    for(int i=1; i<=n; i++)
    {
        if(p.visp[i]==0&&min1>mp[i][p.st])
        {
            min1=mp[i][p.st];
        }
    }
    ret+=min1;
    for(int i=1; i<=n; i++)
    {
        if(p.visp[i]==0&&min2>mp[p.ed][i])
        {
            min2=mp[p.ed][i];
        }
    }
    ret+=min2;
    for(int i=1; i<=n; i++)
    {
        if(p.visp[i]==0)
        {
            min1=min2=INF;
            for(int j=1; j<=n; j++)
            {
                if(min1>mp[i][j])
                min1=mp[i][j];
            }
            for(int j=1; j<=n; j++)
            {
                if(min2>mp[j][i])
                min2=mp[j][i];
            }
            ret+=min1+min2;
        }
    }
    return ret%2==0?(ret/2):(ret/2+1);
}
void get_up()
{
    inq[1]=1;
    up=dfs(1,1,0);
}
void get_low()
{
    low=0;
    for(int i=1; i<=n; i++)
    {
        /*通过排序求两个最小值*/
        int min1=INF,min2=INF;
        int tmpA[22];
        for(int j=1; j<=n; j++)
        {
            tmpA[j]=mp[i][j];
        }
        sort(tmpA+1,tmpA+1+n);//对临时的数组进行排序
        low+=tmpA[1];
    }
}
int solve()
{
    /*贪心法确定上界*/
    get_up();
    
    /*取每行最小的边之和作为下界*/
    get_low();
    
    /*设置初始点,默认从1开始 */
    node star;
    star.st=1;
    star.ed=1;
    star.k=1;
    for(int i=1; i<=n; i++) star.visp[i]=0;
    star.visp[1]=1;
    star.sumv=0;
    star.lb=low;
    
    /*ret为问题的解*/
    int ret=INF;
    
    q.push(star);
    while(!q.empty())
    {
        node tmp=q.top();
        q.pop();
        if(tmp.k==n-1)
        {
            /*找最后一个没有走的点*/
            int p;
            for(int i=1; i<=n; i++)
            {
                if(tmp.visp[i]==0)
                {
                    p=i;
                    break;
                }
            }
            int ans=tmp.sumv+mp[p][tmp.st]+mp[tmp.ed][p];
            node judge = q.top();
            
            /*如果当前的路径和比所有的目标函数值都小则跳出*/
            if(ans <= judge.lb)
            {
                ret=min(ans,ret);
                break;
            }
            /*否则继续求其他可能的路径和,并更新上界*/
            else
            {
                up = min(up,ans);
                ret=min(ret,ans);
                continue;
            }
        }
        /*当前点可以向下扩展的点入优先级队列*/
        node next;
        for(int i=1; i<=n; i++)
        {
            if(tmp.visp[i]==0)
            {
                next.st=tmp.st;

                /*更新路径和*/
                next.sumv=tmp.sumv+mp[tmp.ed][i];

                /*更新最后一个点*/
                next.ed=i;

                /*更新顶点数*/
                next.k=tmp.k+1;

                /*更新经过的顶点*/
                for(int j=1; j<=n; j++) next.visp[j]=tmp.visp[j];
                next.visp[i]=1;

                /*求目标函数*/
                next.lb=get_lb(next);
                
                /*如果大于上界就不加入队列*/
                if(next.lb>up) continue;
                q.push(next);
            }
        }
    }
    return ret;
}
int main()
{
    in();
    printf("%d\n",solve());
    return 0;
}



3、分支限界法解决0/1背包问题。


       在这里只写个思路,相对来说也是比较简单的。

       (1)首先将背包按照价值由大到小进行排列。

       (2)找到上界和下界,背包问题的下界把第一个价值最大的装入背包。上界,采用背包问题的贪心算法(三种策略)最终求得上界。

       (3)限界函数ub=v+(W-w)*(v i+1    /    w i+1)

       (4)画PT表格,每个节点进行判断是否剪枝。最终得到最优解。



算法设计与分析大概总结到这。


       学习是一点一点深入的,这一点体会是多么的深刻,就像我的牙齿一样,黑的部分不是一天两天能黑的,牙疼的引起也不是一天两天的事情,要有牙齿病菌的这种精神!~~~





  • 16
    点赞
  • 72
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
支限界法类又称为剪枝限界法或分支定界法,它类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法。它与回溯法有两点不同:①回溯法只通过约束条件剪去非可行解,而分支限界法不仅通过约束条件,而且通过目标函数的限界来减少无效搜索,也就是剪掉了某些不包含最优解的可行解。②在解空间树上的搜索方式也不相同。回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。分支限界法的搜索策略是:在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一个扩展结点。为了有效地选择下一扩展结点,以加速搜索的进程, 在每一活结点处,计算一个函数值(限界),并根据这些已计算出的函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间树上有最优解的分支推进,以便尽快地找出一个最优解。 从活结点表中选择下一扩展结点的不同方式导致不同的分支限界法。最常见的有以下两种方式: ①队列式(FIFO)分支限界法:队列式分支限界法将活结点表组织成一个队列,并按队列的先进先出原则选取下一个结点为当前扩展结点。 ②优先队列式分支限界法:优先队列式分支限界法将活结点表按照某个估值函数C(x)的值组织成一个优先队列,并按优先队列中规定的结点优先级选取优先级最高的下一个结点成为当前扩展结点。 影响分支限界法搜索效率的有两个主要因素:一是优先队列Q的优先级由C(x)确定,它能否保证在尽可能早的情况下找到最优解,如果一开始找到的就是最优解,那么搜索的空间就能降低到最小。二是限界函数u(x),它越严格就越可能多地剪去分支,从而减少搜索空间。 在用分支限界法解决TSP问题时,有不少很好的限界函数和估值函数已经构造出来出了(限于篇幅,这里不做详细介绍), 使得分支限界法在大多数情况下的搜索效率大大高于回溯法。但是,在最坏情况下,该算法的时间复杂度仍然是O(n!),而且有可能所有的(n-1)!个结点都要存储在队列中。 近似算法是指不能肯定找到最优解的算法,但通常找到的也是比较好的解,或称近似最优解。[20]一般而言,近似算法的时间复杂度较低,通常都是多项式时间内的。由于近似算法的时间效率高,所以在实际应用中,主要是使用近似算法,这一类算法也一直是研究的主要对象。传统的近似算法以采用贪心策略和局部搜索为主,而几十年来,随着以遗传算法为代表的新型启发式搜索算法的逐步完善,在解决TSP问题上获得了巨大的成功。遗传算法、模拟退火算法、蚁群算法等已经成为公认的好算法。在本节中,将介绍传统的近似算法。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值