题目:629D - Babaei and Birthday Cake
题意:给你1-n个圆柱体,要求从1-n,选择一些体积逐渐增大的圆柱体,使得所选的圆柱体体积之和最大。
分析:看到这题,n的数据范围1e5,感觉会超时,于是很快用n^2的dp敲完,超时。。。
O(n^2)的状态转移方程:dp[i]表示到i圆柱体最大的体积和
if(val[i]>val[j]){dp[i]=max(dp[i],dp[j]+val[i]); if(dp[i]>ans)ans=dp[i];
后来都说用线段树,仔细一想,还真是。这不就是用线段树维护区间最大值嘛,对于ai,找出他前面最大的dp[j],(j<i).然后dp[i]=dp[j]+a[i],最后把dp[i]更新到树上。
做完这题,顺便对这两天做的线段树做个总结,线段树是一个思想,通过转换成树形结构,已达到降低时间复杂度的目的,具体的方面在:单点更新(比如求逆序对),查询区间最值,成段更新,扫描线等。我现在只会这些,以后慢慢积累吧。
再说说这题,这题的基础就是单点更新,先把a数组排序(这是为了维护体积单调递增的条件),然后依次把每个圆柱体val的值更新到线段树中(是不是类似于求逆序对?)。怎么更新呢?因为线段树维护的是区间最大值,也就是最大的dp[i](dp[i]表示到i圆柱体最大的体积和)。所以从1——id-1的区间内查找最大的dp[j],然后加上val[i],最后得到dp[i],并更新到线段树上。这就实现了状态转移。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
const double pi=acos(-1.0);
const int N=1e5+5;
typedef long long ll;
ll dp[N],a[N],val[N],maxn[N<<2];
ll query(int a,int b,int l,int r,int rt)
{
if(a<=l&&r<=b)return maxn[rt];
int m=(l+r)>>1;
ll ans=0;
if(a<=m)ans=max(ans,query(a,b,lson));
if(b>m)ans=max(ans,query(a,b,rson));
return ans;
}
void update(int id,int i,int l,int r,int rt)
{
if(l==r){
maxn[rt]=max(maxn[rt],dp[i]);
return;
}
int m=(l+r)>>1;
if(id<=m)update(id,i,lson);
else update(id,i,rson);
maxn[rt]=max(maxn[rt<<1],maxn[rt<<1|1]);
}
int main()
{
int n;
//freopen("f.txt","r",stdin);
scanf("%d",&n);
ll r,h;
for(int i=1;i<=n;i++){
scanf("%I64d%I64d",&r,&h);
a[i]=val[i]=r*r*h;
}
sort(a+1,a+1+n);
memset(maxn,0,sizeof(maxn));
ll ans=-1e18;
for(int i=1;i<=n;i++){
int id=lower_bound(a+1,a+1+n,val[i])-a;//id是排序后圆柱体的位置,
if(id==1)dp[i]=val[i];
else dp[i]=query(1,id-1,1,n,1)+val[i]; //[1,id-1]区间内求dp[j](j<i)
ans=max(ans,dp[i]);
update(id,i,1,n,1); //把dp[i]更新到树上
}
printf("%.12lf\n", pi*ans);
return 0;
}