Codeforces 629D - Babaei and Birthday Cake 线段树

题目:629D - Babaei and Birthday Cake 

题意:给你1-n个圆柱体,要求从1-n,选择一些体积逐渐增大的圆柱体,使得所选的圆柱体体积之和最大。

分析:看到这题,n的数据范围1e5,感觉会超时,于是很快用n^2的dp敲完,超时。。。

O(n^2)的状态转移方程:dp[i]表示到i圆柱体最大的体积和

if(val[i]>val[j]){dp[i]=max(dp[i],dp[j]+val[i]);
if(dp[i]>ans)ans=dp[i];

后来都说用线段树,仔细一想,还真是。这不就是用线段树维护区间最大值嘛,对于ai,找出他前面最大的dp[j],(j<i).然后dp[i]=dp[j]+a[i],最后把dp[i]更新到树上。

做完这题,顺便对这两天做的线段树做个总结,线段树是一个思想,通过转换成树形结构,已达到降低时间复杂度的目的,具体的方面在:单点更新(比如求逆序对),查询区间最值,成段更新,扫描线等。我现在只会这些,以后慢慢积累吧。

再说说这题,这题的基础就是单点更新,先把a数组排序(这是为了维护体积单调递增的条件),然后依次把每个圆柱体val的值更新到线段树中(是不是类似于求逆序对?)。怎么更新呢?因为线段树维护的是区间最大值,也就是最大的dp[i](dp[i]表示到i圆柱体最大的体积和)。所以从1——id-1的区间内查找最大的dp[j],然后加上val[i],最后得到dp[i],并更新到线段树上。这就实现了状态转移。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
const double pi=acos(-1.0);
const int N=1e5+5;
typedef long long ll;
ll dp[N],a[N],val[N],maxn[N<<2];

ll query(int a,int b,int l,int r,int rt)
{
    if(a<=l&&r<=b)return maxn[rt];
    int m=(l+r)>>1;
    ll ans=0;
    if(a<=m)ans=max(ans,query(a,b,lson));
    if(b>m)ans=max(ans,query(a,b,rson));
    return ans;
}
void update(int id,int i,int l,int r,int rt)
{
    if(l==r){
        maxn[rt]=max(maxn[rt],dp[i]);
        return;
    }
    int m=(l+r)>>1;
    if(id<=m)update(id,i,lson);
    else update(id,i,rson);
    maxn[rt]=max(maxn[rt<<1],maxn[rt<<1|1]);
}
int main()
{
    int n;
    //freopen("f.txt","r",stdin);
    scanf("%d",&n);
    ll r,h;
    for(int i=1;i<=n;i++){
        scanf("%I64d%I64d",&r,&h);
        a[i]=val[i]=r*r*h;
    }
    sort(a+1,a+1+n);
    memset(maxn,0,sizeof(maxn));
    ll ans=-1e18;
    for(int i=1;i<=n;i++){
        int id=lower_bound(a+1,a+1+n,val[i])-a;//id是排序后圆柱体的位置,
        if(id==1)dp[i]=val[i];
        else dp[i]=query(1,id-1,1,n,1)+val[i]; //[1,id-1]区间内求dp[j](j<i)
        ans=max(ans,dp[i]);
        update(id,i,1,n,1); //把dp[i]更新到树上
    }
    printf("%.12lf\n", pi*ans);
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值