人工智能之回归

本文介绍了回归的基本概念,包括线性回归、非线性回归、岭回归、套索回归以及逻辑回归。重点阐述了线性回归在解决过拟合问题上的正则化方法,并探讨了逻辑回归在分类中的应用。最后,提到了深度学习中回归在目标检测和图像超分辨率等任务中的应用。
摘要由CSDN通过智能技术生成

一,回归的直观理解,如图所示,X1,X2就是我们的两个特征(年龄,工资)Y是银行最终会借给我们多少钱。找到最合适的一个平面(因为是X1,X2两个变量,所以是一个平面,如果只有一个变量就是一条线,如果是大于2的变量,就是一个超平面)来最好的拟合我们的数据点。
在这里插入图片描述
拟合的平面的表达式:
在这里插入图片描述
化简为:
在这里插入图片描述
其中,θ是需要核定的系数
对于每个样本
在这里插入图片描述
y是目标值,ε表示误差,且服从高斯分布,那么只要通过优化使得所有的样本的预测误差总和最小,就达到了优化的目的。预测时,将x1,x2乘以相应的θ系数就可以得到预测值了。
回归的目的是预测数值型的目标值,如预测商品价格、未来几天的PM2.5等。最直接的办法是依据输入写出一个目标值的计算公式,该公式就是所谓的回归方程(regressionequati

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值