一,回归的直观理解,如图所示,X1,X2就是我们的两个特征(年龄,工资)Y是银行最终会借给我们多少钱。找到最合适的一个平面(因为是X1,X2两个变量,所以是一个平面,如果只有一个变量就是一条线,如果是大于2的变量,就是一个超平面)来最好的拟合我们的数据点。
拟合的平面的表达式:
化简为:
其中,θ是需要核定的系数
对于每个样本
y是目标值,ε表示误差,且服从高斯分布,那么只要通过优化使得所有的样本的预测误差总和最小,就达到了优化的目的。预测时,将x1,x2乘以相应的θ系数就可以得到预测值了。
回归的目的是预测数值型的目标值,如预测商品价格、未来几天的PM2.5等。最直接的办法是依据输入写出一个目标值的计算公式,该公式就是所谓的回归方程(regressionequati
人工智能之回归
最新推荐文章于 2024-08-20 14:38:56 发布
本文介绍了回归的基本概念,包括线性回归、非线性回归、岭回归、套索回归以及逻辑回归。重点阐述了线性回归在解决过拟合问题上的正则化方法,并探讨了逻辑回归在分类中的应用。最后,提到了深度学习中回归在目标检测和图像超分辨率等任务中的应用。
摘要由CSDN通过智能技术生成