[区间dp] Brackets sequence Uva1626 (待)

题意

给一个只由 ‘(’ ‘)’ ‘[’ ‘]’ 组成的字符串,但其中并不是所有的括号都是匹配好的。求最少插入几个括号后可使源字符串中的所有括号匹配好,输出插入后的字符串。

题解

本题虽然输入输出有一些坑,但找状态、写状态转移方程并不难。

这里说说对于区间dp的理解。

相对于线性dp来说,区间dp可以在线上任意一点分成两个子问题。而线性dp的处理方向一般是单向的,且分为的是子步骤。需要注意的是,区间dp若不优化,则时间复杂度一般都为O(n^3)。(优化待。。。)

其次对于解的构造问题。

之前,我都是用一个与dp同维的数组保存每步的选择。但之后发现,对于解的构造可以直接追溯dp值,正确性也可以证明。。。

这题还有一些关于排bug的启示,待日后。。。。。 

AC代码

#include <cstdio>
#include <algorithm>
#include <vector>
#include <iostream>
#include <cstring>
using namespace std;

const int maxn = 10000+1;
const int INF = 0x3f3f3f3f;

int dp[maxn][maxn],p[maxn][maxn],n;
char a[maxn];

bool cmp(char a, char b){
    if(a=='(') return b==')';
    if(a=='[') return b==']';
    return false;
}


void print(int i, int j){
    if(i>j) return;
    if(i==j){
        if(a[i] == '(' || a[i]==')') printf("()");
        else printf("[]");
        return;
    }
    int ans = dp[i][j];
    if(cmp(a[i], a[j])&&ans == dp[i+1][j-1]){
        printf("%c", a[i]);print(i+1, j-1);printf("%c", a[j]);
        return;
    }
    for(int k = i; k<j; k++)
    if(ans == dp[i][k]+dp[k+1][j]){
        print(i,k);print(k+1, j);
        return;
    }
}

int main(){
    int T;
    scanf("%d", &T);
    getchar();
    while(T--){
        gets(a);
        gets(a);
        n = strlen(a);
        for(int i = 0; i<n; i++){
            dp[i+1][i] = 0;
            dp[i][i] = 1;
        }
        for(int i  = n-2; i >= 0; i--)
        for(int j = i+1; j<n; j++){
            dp[i][j] = n;
            if(cmp(a[i], a[j])) dp[i][j] = min(dp[i][j], dp[i+1][j-1]);
            for(int k = i; k<j; k++)
                dp[i][j] = min(dp[i][j], dp[i][k]+dp[k+1][j]);
        }
        print(0,n-1);
        printf("\n");
        if(T)printf("\n");
    }
}

 

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值