题意
给一个只由 ‘(’ ‘)’ ‘[’ ‘]’ 组成的字符串,但其中并不是所有的括号都是匹配好的。求最少插入几个括号后可使源字符串中的所有括号匹配好,输出插入后的字符串。
题解
本题虽然输入输出有一些坑,但找状态、写状态转移方程并不难。
这里说说对于区间dp的理解。
相对于线性dp来说,区间dp可以在线上任意一点分成两个子问题。而线性dp的处理方向一般是单向的,且分为的是子步骤。需要注意的是,区间dp若不优化,则时间复杂度一般都为。(优化待。。。)
其次对于解的构造问题。
之前,我都是用一个与dp同维的数组保存每步的选择。但之后发现,对于解的构造可以直接追溯dp值,正确性也可以证明。。。
这题还有一些关于排bug的启示,待日后。。。。。
AC代码
#include <cstdio>
#include <algorithm>
#include <vector>
#include <iostream>
#include <cstring>
using namespace std;
const int maxn = 10000+1;
const int INF = 0x3f3f3f3f;
int dp[maxn][maxn],p[maxn][maxn],n;
char a[maxn];
bool cmp(char a, char b){
if(a=='(') return b==')';
if(a=='[') return b==']';
return false;
}
void print(int i, int j){
if(i>j) return;
if(i==j){
if(a[i] == '(' || a[i]==')') printf("()");
else printf("[]");
return;
}
int ans = dp[i][j];
if(cmp(a[i], a[j])&&ans == dp[i+1][j-1]){
printf("%c", a[i]);print(i+1, j-1);printf("%c", a[j]);
return;
}
for(int k = i; k<j; k++)
if(ans == dp[i][k]+dp[k+1][j]){
print(i,k);print(k+1, j);
return;
}
}
int main(){
int T;
scanf("%d", &T);
getchar();
while(T--){
gets(a);
gets(a);
n = strlen(a);
for(int i = 0; i<n; i++){
dp[i+1][i] = 0;
dp[i][i] = 1;
}
for(int i = n-2; i >= 0; i--)
for(int j = i+1; j<n; j++){
dp[i][j] = n;
if(cmp(a[i], a[j])) dp[i][j] = min(dp[i][j], dp[i+1][j-1]);
for(int k = i; k<j; k++)
dp[i][j] = min(dp[i][j], dp[i][k]+dp[k+1][j]);
}
print(0,n-1);
printf("\n");
if(T)printf("\n");
}
}