[线性dp] Mathematical Curse

题意

有n个数字,m个运算符合(包括+、-、*、/)。给定初值k,求将所有符号用完,可得到的最大值。

题解

本题形式上是一个简单的线性dp,但是由于题目的特殊性,需要同时维护最大值和最小值。而这一点是我之前没有考虑过的。

之前,自己对dp的理解就是,将dp定义为题目要求的答案,之后按照顺序转移状态即可。但是,我忽略了他们之间一个共同点:每一步转移都只会从之前状态的一个值转移过来,而且在我之前做的题中,对dp定义和题目答案的要求是统一的。现在看来这可能只是一个巧合。题目要求某一最大值,而dp完全可能维护最小值。

做个猜想:动态规划维护的值的个数并不一定是一个。由于题目的特性,状态可能会从多个极值中转移过来。有多少种可能就需要维护多少个极值

AC代码

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;

typedef long long ll;

const int mod = 1000000007;
const int maxn = 1001;
const ll INF = 1e18+1;


ll dp1[maxn][10],dp2[maxn][10];
char f[10];
int a[maxn];
int n,m,k;

ll w(ll x, char fj, ll ai){
    if(fj=='+') return x+ai;
    if(fj=='-') return x-ai;
    if(fj=='*') return x*ai;
    if(fj=='/') return x/ai;
    return -1;
}

int main()
{
	int T;
	scanf("%d", &T);
	while(T--){
        scanf("%d%d%d", &n, &m, &k);
        for(int i = 1; i<=n; i++){
            scanf("%d", a+i);
        }
        getchar();
        for(int i = 1; i<=m; i++){
            scanf("%c", f+i);
        }
        for(int i = 1; i <= n; i++){
            dp1[i][0] = dp2[i][0] = k;
        }
        dp1[1][1] = dp2[1][1] = w(k, f[1], a[1]);
        for(int i = 2; i <= n; i++){
            for(int j = 1; j <= min(i,m); j++){
                dp1[i][j] = max(w(dp1[i-1][j-1], f[j], a[i]), w(dp2[i-1][j-1], f[j], a[i]));
                dp2[i][j] = min(w(dp1[i-1][j-1], f[j], a[i]), w(dp2[i-1][j-1], f[j], a[i]));
                if(i > j){
                    dp1[i][j] = max(dp1[i][j], dp1[i-1][j]);
                    dp2[i][j] = min(dp2[i][j], dp2[i-1][j]);
                }
            }
        }
        printf("%lld\n", dp1[n][m]);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值