一、题目描述
给定两个数组 nums1 和 nums2 ,返回它们的交集 。
示例 1:
输入:nums1 = [1,2,2,1], nums2 = [2,2]
输出:[2]
示例 2:
输入:nums1 = [4,9,5], nums2 = [9,4,9,8,4]
输出:[9,4]
解释:[4,9] 也是可通过的
说明:
输出结果中的每个元素一定是唯一 的。
我们可以不考虑输出结果的顺序。
二、代码实现
方法一:双层 for 循环
解题思路
计算两个数组的交集,直观的方法是遍历数组 nums1,对于其中的每个元素,遍历数组 nums2 判断该元素是否在数组 nums2 中,如果存在,则将该元素添加到返回结果中。
代码实现
func intersection(nums1 []int, nums2 []int) []int {
ret := make([]int, 0)
numMap := make(map[int]int)
for _, num1 := range nums1 {
for _, num2 := range nums2 {
if num1 == num2 && numMap[num1] == 0 {
numMap[num1] = 1 // 放入map中
ret = append(ret, num1)
}
}
}
return ret
}
复杂度分析
-
时间复杂度:O(mn),其中 m 和 n 分别是两个数组的长度。遍历数组 nums1 需要 O(m) 的时间,判断 nums1 中的每个元素是否在数组 nums2 中需要 O(n) 的时间,因此总的时间复杂度是 O(mn)。
-
空间复杂度:O(m+n),其中 m 和 n 分别是两个数组的长度。空间复杂度主要取决于两个集合。
方法二:借助哈希表
解题思路
使用哈希集合存储元素,则可以在 O(1) 的时间内判断一个元素是否在集合中,从而降低时间复杂度。
遍历数组 nums1,使用哈希表存储 nums1的每个元素,然后遍历数组 nums2,判断其每个元素是否在哈希表中,如果在哈希表中,则将该元素添加到返回结果中。
代码实现
func intersection(nums1 []int, nums2 []int) []int {
ret := make([]int, 0)
numMap := make(map[int]int)
for _, num1 := range nums1 {
numMap[num1] = 1
}
for _, num2 := range nums2 {
if numMap[num2] > 0 {
delete(numMap, num2) // 从 map 中删除
ret = append(ret, num2)
}
}
return ret
}
复杂度分析
-
时间复杂度:O(m+n),其中 m 和 n 分别是两个数组的长度。遍历数组 nums1 需要 O(m) 的时间,遍历数组 nums2 中需要 O(n) 的时间,因此总的时间复杂度是 O(m+n)。
-
空间复杂度:O(m+n),其中 m 和 n 分别是两个数组的长度。空间复杂度主要取决于两个集合。
方法三:排序 + 双指针
解题思路
首先对两个数组进行排序,然后使用两个指针遍历两个数组。可以预见的是加入答案的数组的元素一定是递增的,为了保证加入元素的唯一性,我们需要额外记录变量 pre,表示上一次加入答案数组的元素。
初始时,两个指针分别指向两个数组的头部。每次比较两个指针指向的数字,如果两个数字不相等,则将指向较小数字的指针右移一位,如果两个数字相等,且该数字不等于 pre,将该数字添加到返回结果中,并更新 pre 变量,同时将两个指针都右移一位。当至少有一个指针超出数组范围时,遍历结束。
代码实现
func intersection(arr1, arr2 []int) []int {
ret := make([]int, 0)
i, j := 0, 0
sort.Ints(arr1)
sort.Ints(arr2)
for i < len(arr1) && j < len(arr2) {
if arr1[i] > arr2[j] {
j++
} else if arr1[i] < arr2[j] {
i++
} else {
if len(ret) == 0 || arr1[i] > ret[len(ret)-1] {
ret = append(ret, arr1[i])
}
i++
j++
}
}
return ret
}
复杂度分析
-
时间复杂度:O(mlogm+nlogn),其中 m 和 n 分别是两个数组的长度。对两个数组排序的时间复杂度分别是 O(mlogm) 和 O(nlogn),双指针寻找交集元素的时间复杂度是 O(m+n),因此总时间复杂度是 O(mlogm+nlogn)。
-
空间复杂度:O(logm+logn),其中 m 和 n 分别是两个数组的长度。空间复杂度主要取决于排序使用的额外空间。