我写这种水题的解题报告估计要让神犇给D飞了.......
这题的题意大概是:给定一棵树,节点是10^5级别的,每个节点有权,2个操作,一个是修改某个节点的权值,另一个是询问X到Y路径上的点权中是否可以选出3个使之构成三角形的3边。权值在0——2^31-1.
这题首先想到树剖,但是发现无法维护。
我们先来看看这样一个问题:在1到N之间选3个数使之构成三角形的三边,问最少选多少个数可以保证?记三边分别为A,B,C(假设A<=B<=C)那么就是要满足A+B>C,显然这三个数是从小到大排序之后相邻的3个数(话说这个我想了半小时),然后我们考虑最坏情况,就是A+B=C,那么再仔细一想就是一个斐波那契数列,这样就是最坏情况,那么这个答案就是斐波那契数列<=项的个数加1(设斐波那契数列第一项是1第二项是2);
那么这题就是一个水题了,0--2^31-1的斐波那契数有47个,那么2点之间距离大于等于48就是肯定有解,否则暴力判断。
代码就不放出来了,想必各位读者应该会写