机器学习
文章平均质量分 89
Rcoons
0.0
展开
-
windows环境下搭建tensorflow环境
文章目录anconda下载安装更换anconda镜像源创建tensorflow环境pycharm使用conda的环境anconda下载安装Anaconda 是 Python 的一个开源发行版本。anaconda 里面集成了很多关于 python 科学计算的第三方库,主要面向科学计算且安装方便,而 python 是一个编译器,如果不使用 anaconda,那么安装起来会比较痛苦,各个库之间的依赖...原创 2020-04-28 12:41:04 · 759 阅读 · 0 评论 -
机器学习中分类模型的指标评估
文章目录混淆矩阵在机器学习中的分类算法模型的准确率当然越高越好,但往往实际工作中几乎不会出现完全正确的模型,这就需要一个指标来衡量一个算法模型的质量,或者说算法模型要达到什么指标才是合格的呢混淆矩阵...原创 2020-01-17 14:02:31 · 2832 阅读 · 0 评论 -
机器学习入门(KNN近邻算法)
文章目录什么是KNNKNN的工作原理KNN算法流程什么是KNN在解释KNN之前,我先给大家举个例子:假如现在院子里分别在不同的栅栏里饲养了10只鸡,8条狗,5只猫,2头猪,这时候从外面又新买了一只鸭子,可是没多余的栅栏了,这时候从这几个家禽家畜的体型外观来分析,是不是应该把鸭子和鸡放在一起饲养呢?我们接下来要说的KNN就是这个思想。KNN(K-Nearest Neighbor)算法(又叫K近...原创 2020-01-07 17:11:30 · 2252 阅读 · 0 评论 -
机器学习入门(python实现逻辑回归二分类)
文章目录数据准备文件数据转矩阵数据初始化逻辑回归函数训练数据测试完整代码数据准备在前面一篇文章中已经为大家介绍了逻辑回归的原理,以及损失函数的推导,今天我们先来练练手,不借助任何机器学习库,用python实现逻辑回归的二分类。这里数据是一份标准化后的男生女生身高体重的部分数据,最后一列是标签data.txt-0.017612 -14.053064 0.0-1.395634 -4.662...原创 2019-12-26 13:28:18 · 6689 阅读 · 4 评论 -
numpy实现鸢尾花数据集PCA降维
文章目录PCA降维过程数据集numpy实现PCA降维PCA降维过程在前面的一篇博客中我已经从数学角度解释了PCA降维的原理,我们从中也可以得到PCA降维的过程1)将原始数据做转置运算,每一行代表一个维度2)每一行(代表一个属性字段)进行零均值化,即减去这一行的均值3)得到原始数据的协方差矩阵4)求出协方差矩阵的特征值及对应的特征向量的单位向量5)将特征向量按对应特征值大小从上到下按行...原创 2019-12-14 14:33:43 · 3988 阅读 · 0 评论 -
PCA降维原理(主成分分析)小结
PCA降维PCA是什么目的和原则PCA是什么PCA(Principal Component Analysis)是一种常用的数据分析方法PCA通过线性变换将原始数据变换为一组各维度线性无关表示,可用于提取数据的主要特征分量及高维数据的降维目的和原则目的: 在机器学习中,实际处理的数据有成千上万甚至几十万的维度,这种情况下机器学习的资源消耗是不可接受的,并且对算法的复杂度也有很大的影响,因此...原创 2019-12-04 14:44:00 · 10307 阅读 · 0 评论 -
机器学习入门(浅谈L1和L2正则)
L1和L2正则1.正则化的作用2. L1正则和L2正则定义:L1正则(特征选择,稀疏矩阵)推导:L1范数约束L2正则与过拟合推导L2范数约束总结1.正则化的作用在机器学习中,训练模型的目标是不仅要在训练集上表现良好,还要在测试集上表现好,我们称之为泛化。实际过程中可能都会遇到模型在训练上表现差,也就是所谓的欠拟合。也会出现在训练上表现良好,在测试上表现差,即:过拟合。而要在这两者之间寻找平衡,...原创 2019-11-08 15:12:46 · 1944 阅读 · 0 评论 -
机器学习入门(逻辑回归详解)
逻辑回归详解1.简介2.模型构建2.1 线性回归2.2 逻辑回归(二元)2.3 sigmod函数1.简介首先逻辑回归(Logistic Regression)是一个分类算法,它可以处理二元分类以及多元分类,是机器学习中一个非常非常常见的模型,在实际生产环境中也常常被使用,是一种经典的分类模型(不是回归模型)2.模型构建2.1 线性回归为了更容易理解LR,我先说一下线性回归吧,线性回归的主...原创 2019-10-30 13:52:35 · 2344 阅读 · 1 评论 -
机器学习入门(朴素贝叶斯)
机器学习入门(朴素贝叶斯)朴素贝叶斯1. 应用场景2. 贝叶斯公式原理(联合概率,条件概率,边缘概率)3. 贝叶斯公式4. 贝叶斯的优缺点朴素贝叶斯1. 应用场景贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法贝叶斯决策论(Bayesian decision theory)是概率框架下实施决...原创 2019-10-23 13:43:45 · 1733 阅读 · 0 评论