computer vision
计算机视觉相关知识笔记记录
lppfwl
这个作者很懒,什么都没留下…
展开
-
ResNet解读
ResNet是由2015年的论文:Deep Residual Learning for Image Recognition提出,现在在深度学习网络中应用越来越广泛。ResNet提出背景就是深层神经网络训练困难的问题,究其原因主要是因为梯度消失/爆炸,导致模型难以收敛,尽管batch normalization的使用可以使几十层的网络使用SGD算法训练收敛,但是更深的网络就没办法了。就算能收敛,也还是存在模型性能退化的问题,模型误差不降反升。为了解决这个问题,论文作者提出残差结构,让网络不去直接拟合目原创 2020-08-17 18:00:46 · 1072 阅读 · 0 评论 -
目标检测中的AP计算
目标检测中的AP计算最近在学习目标检测,对模型评价指标AP的计算过程有点疑问,经过查找资料、问师兄,最终算是有了一个相对明确的了解,特此记录一下,方便以后查看,不足之处还请大家批评指正!AP(average precision)是目标检测论文中广泛使用的模型评价指标,VOC的AP计算方法在2010年的时候发生过一次更改,现在常用的是2010年之后更改的AP计算方法,该计算方法相比于之前也更为合理,本文的AP计算也是2010年之后的计算方法。官方的定义如下:(图片源自博客https://blog.cs原创 2020-08-15 11:52:37 · 22171 阅读 · 16 评论