洛谷P6812

博客探讨了洛谷P6812问题,涉及先辈序列的性质,即非递减序列。作者提出使用线段树来解决区间查询与修改的问题。首先尝试了区间修改后单点查询的方法,但发现其复杂度为O(mnlogn)。接着,优化方案是在线段树节点上标记flag,通过比较子区间最左和最右值来判断是否为先辈。最后,文章提到了利用差分数组转换问题,通过查询区间内最小值来确定序列是否满足非递减条件,但该方法存在错误,需要进一步研究。
摘要由CSDN通过智能技术生成

若该序列是先辈,假设取长度为k的后缀,则该序列中前k个元素都比其长度为k的后缀屑,因此不难得出先辈一定是一个非递减序列。因此题目的询问变成求一个序列是否为非递减序列,用线段树维护。
我的第一个想法,就是区间修改,然后根据要查询的区间对线段树中每个点单点查询,之后再判断是否是非递减序列。
代码如下:

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e6+10;
typedef long long LL;
int n,m,w[N];
struct node
{
   
    int l,r;
    LL v;
    LL add;
}tr[4*N];
void pushup(int u)
{
   
    tr[u].v=tr[u<<1].v+tr[u<<1|1].v;
}
void build(int u,int l,int r)
{
   
    if(l==r)
    {
   
        tr[u]={
   l,r,w[l],0};
        return;
    }
    tr[u]={
   l,r};
    int mid=l+r>>1;
    build(u<<1,l,mid);
    build(u<<1|1,mid+1,r);
    pushup(u);
}
void pushdown(int u)
{
   
    if(tr[u].add)
    {
   
        tr[u<<1].add+=tr[u].add;
        tr[u<<1|1].add+=tr[u].add;
        tr[u<<1].v+=(tr[u<<1].r-tr[u<<1].l+1)*tr[u].add;
        tr[u<<1|1].v+=(tr[u<<1|1].r-tr[u<<1|1].l+1)*tr[u].add;
        tr[u].add=0;
    }
}
void modify(int u,int l,int r,int c)
{
   
    if(tr[u].l>=l&&tr[u].r<=r)
    {
   
        tr[u].add+=c;
        tr[u].v+=(tr[u].r-tr[u].l+1)*c;
        return;
    }
    pushdown(u);
    int mid=tr[u].l+tr[u].r>>1;
    if(l<=mid) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值