Date:2022.01.13
题意:
n
n
n组数据,定义
j
j
j为当前组号,每组数据对答案贡献满足
a
i
⋅
(
j
−
1
)
+
b
i
⋅
(
n
−
j
)
a_i⋅(j−1)+b_i⋅(n−j)
ai⋅(j−1)+bi⋅(n−j),重新排序让所有贡献和最小。
思路:式子变形,原式=
j
⋅
(
a
i
−
b
i
)
+
(
b
i
⋅
n
−
a
i
)
j·(a_i-b_i)+(b_i·n-a_i)
j⋅(ai−bi)+(bi⋅n−ai),
i
i
i从
[
1
,
n
]
[1,n]
[1,n]累加后,
(
b
i
⋅
n
−
a
i
)
(b_i·n-a_i)
(bi⋅n−ai)的和固定,而前半部分因为
⋅
j
·j
⋅j且
j
j
j递增,因此按
a
i
−
b
i
a_i-b_i
ai−bi递减排序即可。
代码如下:
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5+10;
typedef long long LL;
LL n;
struct node
{
LL a,b;
}s[N];
bool cmp(node a,node b)
{
return a.a-a.b>b.a-b.b;
}
int main()
{
ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>s[i].a>>s[i].b;
}
sort(s+1,s+1+n,cmp);
LL res=0;
for(int i=1;i<=n;i++) res+=s[i].a*(i-1)+s[i].b*(n-i);
cout<<res;
return 0;
}