洛谷P1681 最大正方形II【DP-最大正方形模型】【黄】

该博客介绍了洛谷P1681问题的解决方案,涉及一个N*M的矩阵,其中格子由黑白两色构成。目标是找到内部黑白交错的最大正方形,使用动态规划的方法求解,包括两个关键状态转移方程,通过遍历矩阵并更新状态来找到最大边长。

Date:2022.01.13
题意:图上有一个矩阵,由N*M个格子组成,这些格子由两种颜色构成,黑色和白色。请找到面积最大的且内部是黑白交错(即两个相连的正方形颜色不能相同)的正方形。(N <= 1500)

思路:前置知识。由此有两个状态:
f[i][j][1]f[i][j][1]f[i][j][1]:以(i,j)(i,j)(i,j)为右下角且a[i][j]==1a[i][j]==1a[i][j]==1的最大黑白交错正方形的边长。
f[i][j][0]f[i][j][0]f[i][j][0]:以(i,j)(i,j)(i,j)为右下角且a[i][j]==0a[i][j]==0a[i][j]==0的最大黑白交错正方形的边长。
根据前置知识,可得到状态转移方程:
f[i][j][1]=min(min(f[i−1][j][0],f[i][j−1][1]),f[i−1][j−1])+1【硬性前提:a[i][j]==1】f[i][j][1]=min(min(f[i-1][j][0],f[i][j-1][1]),f[i-1][j-1])+1 【硬性前提:a[i][j]==1】f[i

P1681 最大正方形II一个动态规划问题,要求给定一个由 '0' 和 '1' 组成矩阵,找出其中最大正方形,并输出其边长。 以下是一个 C++ 编写的解答示例: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; int maximalSquare(vector<vector<char>>& matrix) { int rows = matrix.size(); if (rows == 0) return 0; int cols = matrix[0].size(); vector<vector<int>> dp(rows + 1, vector<int>(cols + 1, 0)); int maxSide = 0; for (int i = 1; i <= rows; i++) { for (int j = 1; j <= cols; j++) { if (matrix[i-1][j-1] == '1') { dp[i][j] = min(min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1; maxSide = max(maxSide, dp[i][j]); } } } return maxSide * maxSide; } int main() { int n, m; cin >> n >> m; vector<vector<char>> matrix(n, vector<char>(m)); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { cin >> matrix[i][j]; } } cout << maximalSquare(matrix) << endl; return 0; } ``` 在上述代码中,我们首先定义了一个名为 `maximalSquare` 的函数,该函数接受一个二维字符矩阵 `matrix` 作为参数,返回最大正方形的边长。 在 `main` 函数中,我们首先从标准输入读取矩阵的行数和列数,并创建一个大小为 `n x m` 的二维字符矩阵。然后,我们按行读取矩阵的数据,并调用 `maximalSquare` 函数进行求解。最后,输出最大正方形的边长。 在动态规划的解法中,我们使用一个二维数组 `dp` 来记录以当前位置为右下角的最大正方形的边长。遍历矩阵中的每个元素,如果当前元素为 '1',则根据其左方、上方和左上方的最大正方形边长计算出当前位置的最大正方形边长,并更新 `dp` 数组和最大边长变量。 请注意,以上代码仅为示例,可能需要根据具体题目要求进行适当修改。同时,为了简化示例,未进行输入验证,请确保输入的矩阵符合题目要求。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值