Date:2022.01.13
题意:图上有一个矩阵,由N*M个格子组成,这些格子由两种颜色构成,黑色和白色。请找到面积最大的且内部是黑白交错(即两个相连的正方形颜色不能相同)的正方形。(N <= 1500)
思路:前置知识。由此有两个状态:
①f[i][j][1]f[i][j][1]f[i][j][1]:以(i,j)(i,j)(i,j)为右下角且a[i][j]==1a[i][j]==1a[i][j]==1的最大黑白交错正方形的边长。
②f[i][j][0]f[i][j][0]f[i][j][0]:以(i,j)(i,j)(i,j)为右下角且a[i][j]==0a[i][j]==0a[i][j]==0的最大黑白交错正方形的边长。
根据前置知识,可得到状态转移方程:
①f[i][j][1]=min(min(f[i−1][j][0],f[i][j−1][1]),f[i−1][j−1])+1【硬性前提:a[i][j]==1】f[i][j][1]=min(min(f[i-1][j][0],f[i][j-1][1]),f[i-1][j-1])+1 【硬性前提:a[i][j]==1】f[i

该博客介绍了洛谷P1681问题的解决方案,涉及一个N*M的矩阵,其中格子由黑白两色构成。目标是找到内部黑白交错的最大正方形,使用动态规划的方法求解,包括两个关键状态转移方程,通过遍历矩阵并更新状态来找到最大边长。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



