P1681 最大正方形II
题意
给出一个 n × m n\times m n×m的 01 01 01矩阵,问最大的01交错的正方形大小是多少。
思路:
d p [ i ] [ j ] dp[i][j] dp[i][j]表示以 ( i , j ) (i,j) (i,j)这个位置为右下角的最大的矩形的大小。
考虑如何转移。
当 ( i , j ) (i,j) (i,j)和 ( i − 1 , j ) , ( i , j − 1 ) (i-1,j),(i,j-1) (i−1,j),(i,j−1)不相同时, ( i , j ) (i,j) (i,j)这个点才能向上左扩展。
否则 d p [ i ] [ j ] = 1 dp[i][j]=1 dp[i][j]=1
现在我们讨论如何向上面和左边扩展。
当 d p [ i − 1 ] [ j ] = d p [ i ] [ j − 1 ] dp[i-1][j]=dp[i][j-1] dp[i−1][j]=dp[i][j−1]时:我们只需要比较 ( i , j ) (i,j) (i,j)和左上角的 ( i − d p [ i − 1 ] [ j ] , j − d p [ i ] [ j − 1 ] ) (i-dp[i-1][j],j-dp[i][j-1]) (i−dp[i−1][j],j−dp[i][j−1])是否相等,相等的话,就能将 ( i , j ) (i,j) (i,j)扩展到一个更大的矩阵, d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + 1 dp[i][j]=dp[i-1][j]+1 dp[i][j]=dp[i−1][j]+1,否则 d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] dp[i][j]=dp[i-1][j-1] dp[i][j]=dp[i−1][j−1] 。
同理讨论 d p [ i − 1 ] [ j ] < d p [ i ] [ j − 1 ] dp[i-1][j]<dp[i][j-1] dp[i−1][j]<dp[i][j−1], d p [ i − 1 ] [ j ] > d p [ i ] [ j − 1 ] dp[i-1][j]>dp[i][j-1] dp[i−1][j]>dp[i][j−1]。
转移方程见代码
C o d e Code Code
#include <bits/stdc++.h>
using namespace std;
// #define int long long
typedef long long ll;
typedef unsigned long long ull;
const int N = 2000;
int a[N][N], dp[N][N];
signed main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
int n, m;
cin >> n >> m;
for(int i=1; i<=n; i++) {
dp[1][i] = dp[i][1] = 1;
for(int j=1; j<=m; j++) {
cin >> a[i][j];
}
}
int ans = 1;
for(int i=2; i<=n; i++) {
for(int j=2; j<=m; j++) {
int u = dp[i-1][j], v = dp[i][j-1];
if(a[i-1][j] == a[i][j-1] && a[i-1][j] != a[i][j]) {
if(u == 1 || v == 1) dp[i][j] = (a[i][j] == a[i-1][j-1] ? 2 : 1) ;
else if(u == v) {
dp[i][j] = (a[i][j] == a[i-u][j-v] ? u+1 : u);
}
else if(u > v) {
dp[i][j] = (a[i][j] == a[i-v][j-v] ? v+1 : v);
}
else if(u < v) {
dp[i][j] = (a[i][j] == a[i-u][j-u] ? u+1 : u);
}
else dp[i][j] = 1;
}
else dp[i][j] = 1;
ans = max(ans, dp[i][j]);
}
}
cout << ans << endl;
return 0;
}