分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海 拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表 面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。
分水岭的计算过程是一个迭代标注过程。分水岭比较经典的计算方法是L. Vincent提出的。在该算法中,分水岭计算分两个步骤,一个是排序过程,一个是淹没过程。首先对每个像素的灰度级进行从低到高排序,然后在从低到高实 现淹没过程中,对每一个局部极小值在h阶高度的影响域采用先进先出(FIFO)结构进行判断及标注。
分水岭变换得到的是输入图像的集水盆图像,集水盆之间的边界点,即为分水岭。显然,分水岭表示的是输入图像极大值点。因此,为得到图像的边缘信息,通常把梯度图像作为输入图像,即
g(x,y)=grad(f(x,y))={[f(x,y)-f(x-1,y)]2[f(x,y)-f(x,y-1)]2}0.5
式中,f(x,y)表示原始图像,grad{.}表示梯度运算。
分水岭算法对微弱边缘具有良好的响应,图像中的噪声、物体表面细微的灰度变化,都会产生过度分割的现象。但同时应当看出,分水岭算法对微弱边缘具有良好的响应,是得到封闭连续边缘的保证的。另外,分水岭算法所得到的封闭的集水盆,为分析图像的区域特征提供了可能。
为消除分水岭算法产生的过度分割,通常可以采用两种处理方法,一是利用先验知识去除无关边缘信息。二是修改梯度函数使得集水盆只响应想要探测的目标。
为降低分水岭算法产生的过度分割,通常要对梯度函数进行修改,一个简单的方法是对梯度图像进行阈值处理,以消除灰度的微小变化产生的过度分割。即
g(x,y)=max(grad(f(x,y)),gθ)
式中,gθ表示阈值。
分水岭分割技术是一种很优秀的且得到了广泛应用的分割技术,从本质上讲,它属于一种基于区域增长的分割方法,但它得到的确是目标的边界,且是连续、 闭合、但像素宽的边界。在很多领域,这种分割技术都得到了广泛的应用,但分水岭分割却有一个致命的弱点,那就是容易产生过分割,对于噪声和细密纹理非常敏 感,使其常常产生严重的过分割结果。所以,针对这个问题,很多人提出了很多种改进的分水岭分割技术。综合来讲,大概也就三类。其一,分割预处理。既在应用 分水岭分割之前对图像进行一些预处理,诸如除噪,求梯度图像,形态学重建,标记前景背景等等,一个目的,减少小的积水盆,从而减少过分割区域的数量。其 二,分割后处理。既在应用分水岭分割之后对结果图像进行合并处理。如果初始分割产生过多小区域,合并处理会具有很大的运算量,所以后处理的时间复杂度经常 较高,还有合并准则的确定,也是一件比较麻烦的事情,通常有基于相邻区域的平均灰度信息和边界强度信息的合并准则,不同的合并准则会得到不同的分割结果。 其三,就是既有预处理又有后处理的分割技术了,根据具体应用领域的要求,如果只是采取预处理或后处理还不能得到满意的效果,那就把他们都用上试试了。
分水岭分割算法源代码:
//Image Watershed Segmentation
//This is the implementation of the algorithm based on immersion model.
// ===========================================================================
// ===== Module: Watershed.cpp
// ===== -------------------------------------------------------------- ======
// ===== Version 01 Date: 04/21/2003
// ===== -------------------------------------------------------------- ======
// ===========================================================================
// ===== Written by Foxhole@smth.org
// ===== e-mail: gong200@china.com
// ===========================================================================
// Permission to use, copy, or modify this software and its documentation
// for educational and research purposes only is hereby granted without
// fee, provided that this copyright notice appear on all copies and
// related documentation. For any other uses of this software, in original
// or modified form, including but not limited to distribution in whole
// or in part, specific prior permission must be obtained from
// the author(s).
//
// THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
// EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
// WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
//
// IN NO EVENT SHALL RUTGERS UNIVERSITY BE LIABLE FOR ANY SPECIAL,
// INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY
// DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
// WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY
// THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE
// OR PERFORMANCE OF THIS SOFTWARE.
// ===========================================================================
#include <queue>
#include <vector>
#include <windows.h>
/*====================================================================
函数名 : Watershed
功能 : 用标记-分水岭算法对输入图像进行分割
算法实现 : 无
输入参数说明 : OriginalImage --输入图像(灰度图,0~255)
SeedImage --标记图像(二值图,0-非标记,1-标记)
LabelImage --输出图像(1-第一个分割区域,2-第二个分割区域,...)
row --图像行数
col --图像列数
返回值说明 : 无
====================================================================*/
void Watershed(const int **OriginalImage, char** SeedImage, int **LabelImage, int row, int col)
{
using namespace std;
//标记区域标识号,从1开始
int Num=0;
int i,j;
//保存每个队列种子个数的数组
vector<int*> SeedCounts;
//临时种子队列
queue<POINT> que;
//保存所有标记区域种子队列的数组
vector<queue<POINT>* > qu;
int* array;
queue<POINT> *uu;
POINT temp;
for(i=0;i<row;i++)
for(j=0;j<col;j++)
LabelImage[j]=0;
int m,n,k=0;
int up,down,right,left,upleft,upright,downleft,downright;
//预处理,提取区分每个标记区域,并初始化每个标记的种子队列
//种子是指标记区域边缘的点,他们可以在水位上升时向外淹没(或者说生长)
for(i=0;i<row;i++)
{
for(j=0;j<col;j++)
{
//如果找到一个标记区域
if(SeedImage[j]==1)
{
//区域的标识号加一
Num++;
//分配数组并初始化为零
array=new int[256];
ZeroMemory(array,256*sizeof(int));
//
SeedCounts.push_back(array);
//分配本标记的优先队列
uu=new queue<POINT>[256];
//加入到队列数组中
qu.push_back(uu);
//当前点放入本标记区域的临时种子队列中
temp.x=i;
temp.y=j;
que.push(temp);
//当前点标记为已处理
LabelImage[j]=Num;
SeedImage[j]=127;
//让种子队列中的种子进行生长直到所有的种子都生长完毕
while(!que.empty())
{
up=down=right=left=0;
upleft=upright=downleft=downright=0;
//队列中取出一个种子
temp=que.front();
m=temp.x;
n=temp.y;
que.pop();
if(m>0)
{
//上方若为可生长点则加为新种子
if(SeedImage[m-1][n]==1)
{
temp.x=m-1;
temp.y=n;
que.push(temp);
//新种子点标记为已淹没区域
LabelImage[m-1][n]=Num;
SeedImage[m-1][n]=127;
}else//否则上方为不可生长
{
up=1;
}
}
if(m>0&&n>0)
{
if(SeedImage[m-1][n-1]==1)//左上方若为可生长点则加为新种子
{
temp.x=m-1;
temp.y=n-1;
que.push(temp);
//新种子点标记为已淹没区域
LabelImage[m-1][n-1]=Num;
SeedImage[m-1][n-1]=127;
}else//否则左上方为不可生长
{
upleft=1;
}
}
if(m<row-1)
{
if(SeedImage[m+1][n]==1)//下方若为可生长点则加为新种子
{
temp.x=m+1;
temp.y=n;
que.push(temp);
//新种子点标记为已淹没区域
LabelImage[m+1][n]=Num;
SeedImage[m+1][n]=127;
}else//否则下方为不可生长
{
down=1;
}
}
if(m<(row-1)&&n<(col-1))
{
if(SeedImage[m+1][n+1]==1)//下方若为可生长点则加为新种子
{
temp.x=m+1;
temp.y=n+1;
que.push(temp);
//新种子点标记为已淹没区域
LabelImage[m+1][n+1]=Num;
SeedImage[m+1][n+1]=127;
}else//否则下方为不可生长
{
downright=1;
}
}
if(n<col-1)
{
if(SeedImage[m][n+1]==1)//右方若为可生长点则加为新种子
{
temp.x=m;
temp.y=n+1;
que.push(temp);
//新种子点标记为已淹没区域
LabelImage[m][n+1]=Num;
SeedImage[m][n+1]=127;
}else//否则右方为不可生长
{
right=1;
}
}
if(m>0&&n<(col-1))
{
if(SeedImage[m-1][n+1]==1)//右上方若为可生长点则加为新种子
{
temp.x=m-1;
temp.y=n+1;
que.push(temp);
//新种子点标记为已淹没区域
LabelImage[m-1][n+1]=Num;
SeedImage[m-1][n+1]=127;
}else//否则右上方为不可生长
{
upright=1;
}
}
if(n>0)
{
if(SeedImage[m][n-1]==1)//左方若为可生长点则加为新种子
{
temp.x=m;
temp.y=n-1;
que.push(temp);
//新种子点标记为已淹没区域
LabelImage[m][n-1]=Num;
SeedImage[m][n-1]=127;
}else//否则左方为不可生长
{
left=1;
}
}
if(m<(row-1)&&n>0)
{
if(SeedImage[m+1][n-1]==1)//左下方若为可生长点则加为新种子
{
temp.x=m+1;
temp.y=n-1;
que.push(temp);
//新种子点标记为已淹没区域
LabelImage[m+1][n-1]=Num;
SeedImage[m+1][n-1]=127;
}else//否则左方为不可生长
{
downleft=1;
}
}
//上下左右只要有一点不可生长,那么本点为初始种子队列中的一个
if(up||down||right||left||
upleft||downleft||upright||downright)
{
temp.x=m;
temp.y=n;
qu[Num-1][OriginalImage[m][n]].push(temp);
SeedCounts[Num-1][OriginalImage[m][n]]++;
}
}//while结束
}
}
}
bool actives;//在某一水位处,所有标记的种子生长完的标志
int WaterLevel;
//淹没过程开始,水位从零开始上升
for(WaterLevel=0;WaterLevel<256;WaterLevel++)
{
actives=true;
while(actives)
{
actives=false;
//依次处理每个标记区域
for(i=0;i<Num;i++)
{
if(!qu[WaterLevel].empty())
{
actives=true;
while(SeedCounts[WaterLevel]>0)
{
SeedCounts[WaterLevel]--;
temp=qu[WaterLevel].front();
qu[WaterLevel].pop();
m = temp.x;
n = temp.y;//当前种子的坐标
if(m>0)
{
if(!LabelImage[m-1][n])//上方若未处理
{
temp.x=m-1;
temp.y=n;
LabelImage[m-1][n]=i+1;//上方点标记为已淹没区域
if(OriginalImage[m-1][n]<=WaterLevel)//上方若为可生长点则加入当前队列
{
qu[WaterLevel].push(temp);
}
else//否则加入OriginalImage[m-1][n]级队列
{
qu[OriginalImage[m-1][n]].push(temp);
SeedCounts[OriginalImage[m-1][n]]++;
}
}
}
if(m<row-1)
{
if(!LabelImage[m+1][n])//下方若未处理
{
temp.x=m+1;
temp.y=n;
LabelImage[m+1][n]=i+1;//下方点标记为已淹没区域
if(OriginalImage[m+1][n]<=WaterLevel)//下方若为可生长点则加入当前队列
{
qu[WaterLevel].push(temp);
}
else//否则加入OriginalImage[m+1][n]级队列
{
qu[OriginalImage[m+1][n]].push(temp);
SeedCounts[OriginalImage[m+1][n]]++;
}
}
}
if(n<col-1)
{
if(!LabelImage[m][n+1])//右边若未处理
{
temp.x=m;
temp.y=n+1;
LabelImage[m][n+1]=i+1;//右边点标记为已淹没区域
if(OriginalImage[m][n+1]<=WaterLevel)//右边若为可生长点则加入当前队列
{
qu[WaterLevel].push(temp);
}
else//否则加入OriginalImage[m][n+1]级队列
{
qu[OriginalImage[m][n+1]].push(temp);
SeedCounts[OriginalImage[m][n+1]]++;
}
}
}
if(n>0)
{
if(!LabelImage[m][n-1])//左边若未处理
{
temp.x=m;
temp.y=n-1;
LabelImage[m][n-1]=i+1;//左边点标记为已淹没区域
if(OriginalImage[m][n-1]<=WaterLevel)//左边若为可生长点则加入当前队列
{
qu[WaterLevel].push(temp);
}
else//否则加入OriginalImage[m][n-1]级队列
{
qu[OriginalImage[m][n-1]].push(temp);
SeedCounts[OriginalImage[m][n-1]]++;
}
}
}
}//while循环结束
SeedCounts[WaterLevel]=qu[WaterLevel].size();
}//if结束
}//for循环结束
}//while循环结束
}//for循环结束
while(!qu.empty())
{
uu=qu.back();
delete[] uu;
qu.pop_back();
}
while(!SeedCounts.empty())
{
array=SeedCounts.back();
delete[] array;
SeedCounts.pop_back();
}
}
本文来自CSDN博客,转载出处:http://blog.csdn.net/wazdxm1980/archive/2007/07/04/1678275.aspx