springboot整合redis

本文介绍了SpringBoot整合Redis的过程,包括使用StringRedisTemplate和RedisTemplate两个模板工具类,以及Redis在缓存和分布式锁场景的应用。在作为缓存的场景中,强调了数据查询速度和适用条件,并展示了如何使用AOP实现缓存。在分布式锁的讨论中,提出了线程安全问题及解决方案,探讨了synchronized和lock锁在集群环境下的局限性。
摘要由CSDN通过智能技术生成

springboot整合redis时提供了两个模板工具类,StringRedisTemplate和RedisTemplate.

1.StringRedisTemplate

(1) 引入相关的依赖

   <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
        </dependency>

(2)注入StringRedisTemplate该类对象

 @Autowired
 private StringRedisTemplate redisTemplate;

(3)使用StringRedisTemplate

该类把对每种数据类型的操作,单独封了相应的内部类

package com.lpt;

import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.redis.core.HashOperations;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.data.redis.core.ValueOperations;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.TimeUnit;

@SpringBootTest
class SpringbootRedis0802ApplicationTests {

    @Autowired
    private StringRedisTemplate redisTemplate;
    @Test
    void contextLoads() {
        //对hash类型的操作
        HashOperations<String, Object, Object> forHash = redisTemplate.opsForHash();
        forHash.put("k1","name","张三");
        forHash.put("k1","age","15");
        Map<String, String> map = new HashMap<>();
        map.put("name","李四");
        map.put("age","15");
        forHash.putAll("k2",map);
        Object o = forHash.get("k1", "name");
        System.out.println(o);

        Set<Object> k1 = forHash.keys("k1");
        System.out.println(k1);
        List<Object> k11 = forHash.values("k1");
        System.out.println(k11);


        //获取k1对于的所有的field和value
        Map<Object, Object> k12 = forHash.entries("k1");
        System.out.println(k12);

    }
    @Test
    void contextLoads01(){
        //删除指定的key
       // redisTemplate.delete();
        //查看所有的key
//        redisTemplate.keys()
        //是否存在指定的key
//         redisTemplate.hasKey()
        //对字符串数据类型的操作ValueOperations
        ValueOperations<String, String> forValue = redisTemplate.opsForValue();
        //存储字符串类型--key  value long unit  setex();
        forValue.set("k1","张三",30, TimeUnit.SECONDS);
        //等价yusetnx 存入成功返回true失败返回false
        Boolean aBoolean = forValue.setIfAbsent("k2", "李四", 30, TimeUnit.SECONDS);
        System.out.println(aBoolean);

        Integer append = forValue.append("k2", "单身");
        String k2 = forValue.get("k2");
        System.out.println(k2);
    }


}

2.RedisTemplate

package com.lpt;

import com.lpt.eneity.User;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.redis.core.HashOperations;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.data.redis.core.ValueOperations;
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.TimeUnit;

@SpringBootTest
class SpringbootRedis0802ApplicationTests02 {

    //当你存储的value类型为对象类型使用redisTemplate
    //存储的value类型为字符串。StringRedisTemplate  验证码
    @Autowired
    private RedisTemplate redisTemplate;
    @Test
    void test01(){
        //必须指定序列化方式
//        redisTemplate.setKeySerializer(new StringRedisSerializer());
//        redisTemplate.setValueSerializer(new Jackson2JsonRedisSerializer<Object>(Object.class));

        //对String类型操作类
        ValueOperations forValue = redisTemplate.opsForValue();
        //redis中key和value都变成了乱码
        //key和value都没有指定序列化方式,默认采用jdk的序列化方式
        forValue.set("k1","张三");

        forValue.set("k2",new User(1,"彭于晏","城管西"));

    }
    

上面的RedisTemplate需要每次都指定key value以及field的序列化方式,能不能搞一个配置类,已经为RedisTemplate指定好序列化。以后再用就无需指定。

package com.lpt.config;

import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.cache.CacheManager;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.cache.RedisCacheConfiguration;
import org.springframework.data.redis.cache.RedisCacheManager;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.RedisSerializationContext;
import org.springframework.data.redis.serializer.RedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;

import java.time.Duration;

@Configuration
public class RedisConfig {
    @Bean
    public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {
        RedisTemplate<String, Object> template = new RedisTemplate<>();
        RedisSerializer<String> redisSerializer = new StringRedisSerializer();
        Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
        ObjectMapper om = new ObjectMapper();
        om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        jackson2JsonRedisSerializer.setObjectMapper(om);
        template.setConnectionFactory(factory);
        //key序列化方式
        template.setKeySerializer(redisSerializer);
        //value序列化
        template.setValueSerializer(jackson2JsonRedisSerializer);
        //value hashmap序列化  filed value
        template.setHashValueSerializer(jackson2JsonRedisSerializer);
        template.setHashKeySerializer(redisSerializer);
        return template;
    }

3. redis的使用场景

3.1作为缓存

(1)数据存储在内存中,数据查询速度快。可以分摊数据库压力。

 (2)什么样的数据适合放入缓存

查询频率比较高,修改频率比较低。

安全系数低的数据

(3)使用redis作为缓存

package com.lpt.service;

import com.lpt.dao.UserMapper;
import com.lpt.eneity.User;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.ValueOperations;
import org.springframework.stereotype.Service;

import java.util.concurrent.TimeUnit;

@Service
public class UserService {
//    @Autowired
//    private UserMapper userMapper;
//
//    @Autowired
//    private RedisTemplate redisTemplate;
//
//    //业务代码
//    public User findById(Integer id){
//        ValueOperations forValue = redisTemplate.opsForValue();
//        //查询缓存
//        Object o = forValue.get("user::" + id);
//        //缓存命中
//        if(o!=null){
//            return (User) o;
//        }
//        User user = userMapper.selectById(id);
//        if (user!=null){
//            //存入缓存中
//            //forValue.set(TimeUnit.HOURS, "user::"+id, 3);
//            forValue.set("user::"+id,user,3,TimeUnit.HOURS);
//        }
//        return user;
//    }
//    public int deleteById(Integer id){
//        redisTemplate.delete("user::"+id);
//        int i = userMapper.deleteById(id);
//        return i;
//    }
//    public User insert(User user){
//        int insert = userMapper.insert(user);
//        return user;
//    }
//    public User update(User user){
//        ValueOperations forValue = redisTemplate.opsForValue();
//        forValue.set("user::"+user.getId(),user,3, TimeUnit.HOURS);
//        int insert = userMapper.updateById(user);
//        return user;
//    }
}

查看的缓存: 前部分代码相同@before通知,后部分代码也相同后置通知。 我们可以AOP完成缓存代码和业务代码分离。

spring框架它应该也能想到。--使用注解即可完成。解析该注解。

(1)把缓存的配置类加入

 @Bean
    public CacheManager cacheManager(RedisConnectionFactory factory) {
        RedisSerializer<String> redisSerializer = new StringRedisSerializer();
        Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
        //解决查询缓存转换异常的问题
        ObjectMapper om = new ObjectMapper();
        om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        jackson2JsonRedisSerializer.setObjectMapper(om);
        // 配置序列化(解决乱码的问题),过期时间600秒
        RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig()
                .entryTtl(Duration.ofSeconds(600)) //缓存过期10分钟 ---- 业务需求。
                .serializeKeysWith(RedisSerializationContext.SerializationPair.fromSerializer(redisSerializer))//设置key的序列化方式
                .serializeValuesWith(RedisSerializationContext.SerializationPair.fromSerializer(jackson2JsonRedisSerializer)) //设置value的序列化
                .disableCachingNullValues();
        RedisCacheManager cacheManager = RedisCacheManager.builder(factory)
                .cacheDefaults(config)
                .build();
        return cacheManager;
    }

(2)使用开启缓存注解

 (3)使用注解

@Service
public class UserService02 {
    @Autowired
    private UserMapper userMapper;

    //业务代码
    //使用查询注解:cacheNames表示缓存的名称 key:唯一标志---dept::key
    //先从缓存中查看key为(cacheNames::key)是否存在,如果存在则不会执行方法体,如果不存在则执行方法体并把方法的返回值存入缓存中
    @Cacheable(cacheNames = {"user"},key="#id")
    public User findById(Integer id){
        User user = userMapper.selectById(id);
        return user;
    }
    //先删除缓存在执行方法体。
    @CacheEvict(cacheNames = {"user"},key = "#id")
    public int deleteById(Integer id){
        int row = userMapper.deleteById(id);
        return row;
    }
    //这个注释可以确保方法被执行,同时方法的返回值也被记录到缓存中,实现缓存与数据库的同步更新。
    @CachePut(cacheNames = "user",key="#user.id")
    public User update(User user){
        int insert = userMapper.updateById(user);
        return user;
    }


    public User insert(User user){
        int insert = userMapper.insert(user);
        return user;
    }

}

3.2 分布式锁

使用压测工具测试高并发下带来线程安全问题

 我们看到同一个库存被使用了n次。以及数据库中库存为负数。 线程安全问题导致。

1. 解决方案: 使用 synchronized 或者lock锁

@Service
public class ProductStockServiceImpl2 implements ProductStockService {
    @Autowired
    private ProductStockDao productStockDao;

    @Override
    public  String decreaseStock(Integer productId) {
              synchronized (this) {
                  //查看该商品的库存数量
                  Integer stock = productStockDao.findStockByProductId(productId);
                  if (stock > 0) {
                      //修改库存每次-1
                      productStockDao.updateStockByProductId(productId);
                      System.out.println("扣减成功!剩余库存数:" + (stock - 1));
                      return "success";
                  } else {
                      System.out.println("扣减失败!库存不足!");
                      return "fail";
                  }
              }

    }
}

使用synchronized 或者lock锁 如果我们搭建了项目集群,那么该锁无效。

 

 使用idea开集群项目

 发现又出现: 重复数字以及库存为负数

 

 解决办法

//package com.lpt.service.impl;
//
//import com.lpt.dao.ProductStockDao;
//import com.lpt.service.ProductStockService;
//import org.springframework.beans.factory.annotation.Autowired;
//import org.springframework.data.redis.core.StringRedisTemplate;
//import org.springframework.data.redis.core.ValueOperations;
//import org.springframework.stereotype.Service;
//
//@Service
//public class ProductStockServiceImpl_redis implements ProductStockService {
//    @Autowired
//    private ProductStockDao productStockDao;
//
//    @Autowired
//    private StringRedisTemplate redisTemplate;
//
//    @Override
//    public  String decreaseStock(Integer productId) {
//        ValueOperations<String, String> forValue = redisTemplate.opsForValue();
//        Boolean flag = forValue.setIfAbsent("aaa::" + productId, "~~~~~~~~~~~~~~~~~~~~~~");
//            if(flag) {
//                try {
//                    //查看该商品的库存数量
//                    Integer stock = productStockDao.findStockByProductId(productId);
//                    if (stock > 0) {
//                        //修改库存每次-1
//                        productStockDao.updateStockByProductId(productId);
//                        System.out.println("扣减成功!剩余库存数:" + (stock - 1));
//                        return "success";
//                    } else {
//                        System.out.println("扣减失败!库存不足!");
//                        return "fail";
//                    }
//                }finally {
//                    redisTemplate.delete("aaa::" + productId);
//                }
//            }
//
//
//        return "服务器正忙,请稍后在试......";
//    }
//}

数据库数据

测试工具

结果如下:

端口8080:

 端口8081:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值