Python多线程

Python多线程

目的:

(1)了解python线程执行原理。(2)掌握多线程编程与线程同步。(3)了解线程池的使用

线程基本概念

线程是指进程内的一个执行单元,也是进程内的可调度实体。与进程的区别:(1) 地址空间:进程内的一个执行单元;进程至少有一个线程;它们共享进程的地址空间;而进程有自己独立的地址空间。(2)资源拥有:进程是资源分配和拥有的单位,同一个进程内的线程共享进程的资源。(3)线程是处理器调度的基本单位,但进程不是。(4)二者均可并发执行。简而言之,一个程序至少有一个进程,一个进程至少有一个线程。进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。

进程就是一个应用程序在处理机上的一次执行过程,它是一个动态的概念,而线程是进程中的一部分,进程包含多个线程在运行。多线程可以共享全局变量,多进程不能。多线程中,所有子线程的进程号相同;多进程中,不同的子进程进程号不同。进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位。线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源。一个线程可以创建和撤销另一个线程;同一个进程中的多个线程之间可以并发执行。

Python线程模块

python主要是通过thread和threading这两个模块来实现多线程支持。python的thread模块是比较底层的模块,python的threading模块是对thread做了一些封装,可以更加方便的被使用。但是python(cpython)由于GIL的存在无法使用threading充分利用CPU资源,如果想充分发挥多核CPU的计算能力需要使用multiprocessing模块。

 python3.x中通过threading模块创建新的线程有两种方法:一种是通过threading.Thread(Target=executable Method)-即传递给Thread对象一个可执行方法(或对象);第二种是继承threading.Thread定义子类并重写run()方法。第二种方法中,唯一必须重写的方法是run()

通过threading.Thread进行创建多线程:

import threading
import time

def target():

    print("the current threading %s is runing"
       %(threading.current_thread().name))
    time.sleep(1)
    print("the current threading %s is ended"%(threading.current_thread().name))

print("the current threading %s is runing"%(threading.current_thread().name))
## 属于线程t的部分
t = threading.Thread(target=target)
t.start()

## 属于线程t的部分
t.join() # join是阻塞当前线程(此处的当前线程时主线程) 主线程直到Thread-1结束之后才结束
print("the current threading %s is ended"%(threading.current_thread().name))

通过继承threading.Thread定义子类创建多线程

使用Threading模块创建线程,直接从threading.Thread继承,然后重写init方法和run方法:

import threading
import time

class myThread(threading.Thread):  # 继承父类threading.Thread
  
   def __init__(self, threadID, name, counter):
      threading.Thread.__init__(self)
      self.threadID = threadID
      self.name = name
      self.counter = counter

   def run(self):  # 把要执行的代码写到run函数里面 线程在创建后会直接运行run函数
      print("Starting " + self.name)
      print_time(self.name, self.counter, 5)
      print("Exiting " + self.name)

def print_time(threadName, delay, counter):
   while counter:
      time.sleep(delay)
      print("%s process at: %s" % (threadName, time.ctime(time.time())))
      counter -= 1

# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# 开启线程
thread1.start()
thread2.start()

# 等待线程结束
thread1.join()
thread2.join()

print("Exiting Main Thread")

线程同步

如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。使用Thread对象的Lock和Rlock可以实现简单的线程同步,这两个对象都有acquire方法和release方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到acquire和release方法之间。需要注意的是,Python有一个GIL(Global Interpreter Lock)机制,任何线程在运行之前必须获取这个全局锁才能执行,每当执行完100条字节码,全局锁才会释放,切换到其他线程执行。

多线程实现同步有四种方式:锁机制,信号量,条件判断和同步队列

锁机制:threading的Lock类,用该类的acquire函数进行加锁,用realease函数进行解锁

import threading
import time

class myThread(threading.Thread):

   def __init__(self, threadID, name, counter):
      threading.Thread.__init__(self)
      self.threadID = threadID
      self.name = name
      self.counter = counter

   def run(self):
      print("Starting " + self.name)

      # 获得锁,成功获得锁定后返回True
      # 可选的timeout参数不填时将一直阻塞直到获得锁定
      # 否则超时后将返回False
      threadLock.acquire()
      print_time(self.name, self.counter, 5)

      # 释放锁
      threadLock.release()

def print_time(threadName, delay, counter):

   while counter:
      time.sleep(delay)
      print("%s: %s" % (threadName, time.ctime(time.time())))
      counter -= 1

threadLock = threading.Lock()
threads = []

# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# 开启新线程
thread1.start()
thread2.start()

# 添加线程到线程列表
threads.append(thread1)
threads.append(thread2)

# 等待所有线程完成
for t in threads:
   t.join()

print("Exiting Main Thread")

线程同步队列queue:

Python的queue模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列PriorityQueue。这些队列都实现了锁原语,能够在多线程中直接使用。可以使用队列来实现线程间的同步。

queue模块中的常用方法:

queue.qsize() 返回队列的大小

queue.empty() 如果队列为空,返回True,反之False

queue.full() 如果队列满了,返回True,反之False

queue.full 与 maxsize 大小对应

queue.get([block[, timeout]])获取队列,timeout等待时间

queue.get_nowait() 相当Queue.get(False)

queue.put(item) 写入队列,timeout等待时间

queue.put_nowait(item) 相当Queue.put(item, False)

queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号

queue.join() 实际上意味着等到队列为空,再执行别的操作

import queue
import threading
import time

exitFlag = 0

class myThread(threading.Thread):

   def __init__(self, threadID, name, q):
      threading.Thread.__init__(self)
      self.threadID = threadID
      self.name = name
      self.q = q

   def run(self):
      print("Starting " + self.name)
      process_data(self.name, self.q)
      print("Exiting " + self.name)

def process_data(threadName, q):
   while not exitFlag:
      queueLock.acquire()
      if not workQueue.empty():
         data = q.get()
         queueLock.release()
         print("%s processing %s" % (threadName, data))
      else:
         queueLock.release()
      time.sleep(1)

threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = queue.Queue(10)
threads = []
threadID = 1

# 创建新线程
for tName in threadList:
   thread = myThread(threadID, tName, workQueue)
   thread.start()
   threads.append(thread)
   threadID += 1

# 填充队列
queueLock.acquire()
for word in nameList:
   workQueue.put(word)
queueLock.release()

# 等待队列清空
while not workQueue.empty():
   pass

# 通知线程是时候退出
exitFlag = 1

# 等待所有线程完成
for t in threads:
   t.join()

print("Exiting Main Thread")

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值