信息学奥赛一本通 1079:计算分数加减表达式的值 | OpenJudge NOI 1.5 33

【题目链接】

ybt 1079:计算分数加减表达式的值
OpenJudge NOI 1.5 33:计算分数加减表达式的值

【题目考点】

1. 循环

【解题思路】

  • 分析各个项的变化,相邻两项有两点不同
    • 分母增加1
    • 正负符号变化
  • 设循环变量i表示分母的值,从1循环到n。设符号变量sign表示符号的值
    • 每一项的数值为1 / i
    • 每一项的符号位sign,sign的值每次循环后取反(或乘以-1)。
  • 将这些项加和,这个加和就是最终结果

【题解代码】

解法1:
#include<bits/stdc++.h>
using namespace std;
int main()
{
	double s = 0;//s:加和
	int n, sign = 1;//sign:每项符号
	cin>>n;
	for(int i = 1; i <= n; ++i)//i:分母
	{
		s += (double)sign * 1 / i;//每一项:符号乘以分数,分数分子是1,分母是i。要先转为浮点型后再参与计算,才能避免整数间形成整除运算。
		sign = -sign;
	}
	cout<<fixed<<setprecision(4)<<s;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值