【题目链接】
ybt 1079:计算分数加减表达式的值
OpenJudge NOI 1.5 33:计算分数加减表达式的值
【题目考点】
1. 循环
【解题思路】
- 分析各个项的变化,相邻两项有两点不同
- 分母增加1
- 正负符号变化
- 设循环变量i表示分母的值,从1循环到n。设符号变量sign表示符号的值
- 每一项的数值为1 / i
- 每一项的符号位sign,sign的值每次循环后取反(或乘以-1)。
- 将这些项加和,这个加和就是最终结果
【题解代码】
解法1:
#include<bits/stdc++.h>
using namespace std;
int main()
{
double s = 0;//s:加和
int n, sign = 1;//sign:每项符号
cin>>n;
for(int i = 1; i <= n; ++i)//i:分母
{
s += (double)sign * 1 / i;//每一项:符号乘以分数,分数分子是1,分母是i。要先转为浮点型后再参与计算,才能避免整数间形成整除运算。
sign = -sign;
}
cout<<fixed<<setprecision(4)<<s;
return 0;
}