信息学奥赛一本通 2004:【20CSPJ普及组】优秀的拆分 | 洛谷 P7071 [CSP-J2020] 优秀的拆分

博客探讨了如何将十进制数转化为二进制并进行优秀的拆分,重点在于理解数制转换中的按位权展开原理。文章通过举例说明了奇数没有优秀拆分的原因,并提供了两种解题代码实现,分别是通过除基取余和记录位权重的方法。强调在输出时要注意避免浮点型输出导致的科学计数法格式。
摘要由CSDN通过智能技术生成

【题目链接】

ybt 2004:【20CSPJ普及组】优秀的拆分
洛谷 P7071 [CSP-J2020] 优秀的拆分

【题目考点】

  • 数制
    • 基数:即进制数。十进制的基数是10,二进制的基数是2。
    • 按位权展开:
      例: 1234 = 1 ∗ 1 0 3 + 2 ∗ 1 0 2 + 3 ∗ 1 0 1 + 4 ∗ 1 0 0 1234 = 1*10^3+2*10^2+3*10^1+4*10^0 1234=1103+2102+3101+4100
    • 十进制转二进制方法:除基取余
      10 / 2 = 5 … 0
      5 / 2 = 2 … 1
      2 / 2 = 1 … 0
      1 / 2 = 0 … 1
      先得到的余数是低位,后得到的是高位。从下向上取数字,得到10对应的的二进制数字为1010

【解题思路】

  • 题目中的拆分,即为数字在二进制下的按位权展开式。
    例: 10 = 2 3 + 2 1 = 1 ∗ 2 3 + 0 ∗ 2 2 + 1 ∗ 2 1 + 0 ∗ 2 0 10 = 2^3 + 2^1 = 1*2^3+0*2^2+1*2^1+0*2^0 10=23+21=123+022+121+020 ,提取每项前面的系数,就可以得到10的二进制表示为1010。

  • 题目要求拆分后的各个数字必须是2的正整数次幂,也就是说 2 0 2^0 20 1 1 1不符合要求,奇数在按位权展开后必然会得到一项 2 0 2^0 20,因此奇数没有优秀的拆分。

  • 可以通过除基取余的方法得到这个二进制数字,将其记录在一个数字数组中。再从高位向低位遍历这个数字数组,如果数组某元素为1,那么输出该位置对应的位权。
    例:10通过除基取余得到的二进制数字存在数组中,为
    数组元素:0 1 0 1
    数组下标:0 1 2 3
    倒序遍历数组,如果下标为i的元素为1,那么输出 2 i 2^i 2i

  • 【注意 :输出样式】pow函数返回浮点型,如数字很长,用cout或printf("%g")输出时,会以科学计数法的形式输出,那样不符合题目要求。应该将pow()函数的返回值转为整型后再输出。

【题解代码】

解法1:
#include<bits/stdc++.h>
using namespace std;
int main()
{
	int n, num, r[100], ri = 0;//r:数字数组 ri:数组填充用下标 
	cin >> n;
	if(n % 2 == 1)
		cout<<-1;
	else
	{
	    for(int a = n; a > 0; a /= 2)//除基取余 
	        r[ri++] = a % 2;
        for(int i = ri - 1; i >= 0; i--)//倒序遍历数组 
        {
            if(r[i] == 1)
                cout << int(pow(2, i)) << ' ';//输出2^i,要以整型输出,pow返回浮点型,浮点型在很长时输出样式可能变为科学计数法 
        }
	}
	return 0;
}
解法2:

用num记录当前位权,如果当前位权系数为1,那么用数组r记录,位权,最后倒序输出数组r。

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int n, a, wei, r[100], ri = 0;
	cin>>n;
	if(n % 2 == 1)
		cout << -1;
	else
	{//wei为位权,初值1,每次循环乘2,值为1,2,4,8。。。 
		for(a = n, wei = 1; a > 0; a /= 2, wei *= 2)
		{
			if(a % 2 == 1)//如果位权前系数为1 
				r[ri++] = wei;//记录该位权 
		}
		for(int i = ri - 1; i >= 0; --i)//倒序遍历输出 
			cout<<r[i]<<' ';
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值