【题目链接】
ybt 2004:【20CSPJ普及组】优秀的拆分
洛谷 P7071 [CSP-J2020] 优秀的拆分
【题目考点】
- 数制
- 基数:即进制数。十进制的基数是10,二进制的基数是2。
- 按位权展开:
例: 1234 = 1 ∗ 1 0 3 + 2 ∗ 1 0 2 + 3 ∗ 1 0 1 + 4 ∗ 1 0 0 1234 = 1*10^3+2*10^2+3*10^1+4*10^0 1234=1∗103+2∗102+3∗101+4∗100 - 十进制转二进制方法:除基取余
10 / 2 = 5 … 0
5 / 2 = 2 … 1
2 / 2 = 1 … 0
1 / 2 = 0 … 1
先得到的余数是低位,后得到的是高位。从下向上取数字,得到10对应的的二进制数字为1010
【解题思路】
-
题目中的拆分,即为数字在二进制下的按位权展开式。
例: 10 = 2 3 + 2 1 = 1 ∗ 2 3 + 0 ∗ 2 2 + 1 ∗ 2 1 + 0 ∗ 2 0 10 = 2^3 + 2^1 = 1*2^3+0*2^2+1*2^1+0*2^0 10=23+21=1∗23+0∗22+1∗21+0∗20 ,提取每项前面的系数,就可以得到10的二进制表示为1010。 -
题目要求拆分后的各个数字必须是2的正整数次幂,也就是说 2 0 2^0 20即 1 1 1不符合要求,奇数在按位权展开后必然会得到一项 2 0 2^0 20,因此奇数没有优秀的拆分。
-
可以通过除基取余的方法得到这个二进制数字,将其记录在一个数字数组中。再从高位向低位遍历这个数字数组,如果数组某元素为1,那么输出该位置对应的位权。
例:10通过除基取余得到的二进制数字存在数组中,为
数组元素:0 1 0 1
数组下标:0 1 2 3
倒序遍历数组,如果下标为i的元素为1,那么输出 2 i 2^i 2i -
【注意 :输出样式】pow函数返回浮点型,如数字很长,用cout或printf("%g")输出时,会以科学计数法的形式输出,那样不符合题目要求。应该将pow()函数的返回值转为整型后再输出。
【题解代码】
解法1:
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n, num, r[100], ri = 0;//r:数字数组 ri:数组填充用下标
cin >> n;
if(n % 2 == 1)
cout<<-1;
else
{
for(int a = n; a > 0; a /= 2)//除基取余
r[ri++] = a % 2;
for(int i = ri - 1; i >= 0; i--)//倒序遍历数组
{
if(r[i] == 1)
cout << int(pow(2, i)) << ' ';//输出2^i,要以整型输出,pow返回浮点型,浮点型在很长时输出样式可能变为科学计数法
}
}
return 0;
}
解法2:
用num记录当前位权,如果当前位权系数为1,那么用数组r记录,位权,最后倒序输出数组r。
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n, a, wei, r[100], ri = 0;
cin>>n;
if(n % 2 == 1)
cout << -1;
else
{//wei为位权,初值1,每次循环乘2,值为1,2,4,8。。。
for(a = n, wei = 1; a > 0; a /= 2, wei *= 2)
{
if(a % 2 == 1)//如果位权前系数为1
r[ri++] = wei;//记录该位权
}
for(int i = ri - 1; i >= 0; --i)//倒序遍历输出
cout<<r[i]<<' ';
}
return 0;
}