信息学奥赛一本通 2031:【例4.17】四位完全平方数

该博客介绍了如何通过枚举和数字拆分方法判断四位数是否为完全平方数。提供了两种解题思路,一种是分别枚举千位和百位、十位和个位,另一种是对1000到9999的数字进行拆分,寻找特定条件的完全平方数。给出的C++代码实现了这两种方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目链接】

ybt 2031:【例4.17】四位完全平方数

【题目考点】

1. 枚举
2. 循环嵌套
3. 数字拆分
4. 完全平方数

如果一个正整数 a 是某一个整数 b 的平方,那么这个正整数 a 叫做完全平方数。
要判断一个整数a是不是完全平方数,可以对a开方再向下取整,结果为b。再看b的平方是否等于a,如果相等,那么a是完全平方数,否则不是。
即: b = ⌊ a ⌋ b = \lfloor \sqrt{a} \rfloor b=a ,判断 b ∗ b = a b*b = a bb=a,如果是,那么a是完全平方数,否则a不是。
相应的c++函数写为:

bool isPerfectSquare(int a)
{
	int n = sqrt(a);
	return a == n*n;
}

【解题思路】

解法1:

要得到aabb形式的整数,可以分别枚举a,b,范围为0~9,构成形如aabb的数字。
判断这个数字是不是完全平方数。

解法2:

遍历1000~9999的数字,对每个数字做数字拆分,找到其中千位等于百位,且十位等于个位的数字,再判断这个数字是不是完全平方数

【题解代码】

解法1:分别枚举a,b
#include<bits/stdc++.h>
using namespace std;
int main()
{
	int d, num;
	for(int i = 1; i <= 9; ++i)
		for(int j = 0; j <= 9; ++j)
		{
			num = i*1000+i*100+j*10+j;
			d = sqrt(num);//sqrt()结果是浮点型,赋值给整型d后,向下取整
			if(num == d*d)
				cout << num << endl;
		}
	return 0;	
}
解法2:遍历1000~9999,进行数字拆分
#include<bits/stdc++.h>
using namespace std;
int main()
{
	int a, b, c, d, e;
	for(int i = 1000; i <= 9999; ++i)
	{
		a = i/1000;//千位 
		b = i/100%10;//百位 
		c = i/10%10;//十位 
		d = i%10;//个位
		if(a == b && c == d)
		{
			e = sqrt(i);
			if(e*e == i)
				cout << i << endl;
		}
	} 
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值