【题目链接】
ybt 1264:【例9.8】合唱队形
ybt 1837:【04NOIP提高组】合唱队形
OpenJudge 百练 2711:合唱队形
洛谷 P1091 [NOIP2004 提高组] 合唱队形
【题目考点】
1. 动态规划:线性动规
- 求最长上升子序列
- 求最长下降子序列
【解题思路】
合唱队形中,站在C位(最中间)的人应该是最高的,设选择的人为
i
i
i。这个人左侧的人的身高应该是一个上升序列,右侧的人的身高应该是一个下降序列,左右侧人的身高都不应该高于
t
i
t_i
ti。为了使出列的人最少,第
i
i
i人左侧应该取最长上升子序列,右侧应该取最长下降子序列。
求最长上升、下降子序列时,要包括第
i
i
i人。这样容易取到以
i
i
i为结尾的最长上升子序列,以及以i为起始的最长下降子序列的长度。
我们可以尝试让每个人站C位,让他作为最高的人。如果
i
i
i站C位,那么剩下的人数为:以i为结尾的最长上升子序列长度+以i为起始的最长下降子序列的长度-1。因为这两个序列都包含
i
i
i,重复统计了
i
i
i,所以要减1。
出列的人数就是总人数n减去上面求出的剩下的人数。
求出在每种情况下出列的人数的最小值。
1. 求最长上升子序列的方法:
- 状态定义:
dp[i]
:下标从1到i,以i为结尾的最长上升子序列的长度 - 状态转移:
- 如果i不接在已有的上升子序列后面,那么自己成为一个子序列,这个子序列长度为1。即
dp[i]=1
。 - 如果i准备接在某个已有的上升子序列后面,那么遍历下标1~i-1,取到的一个下标为j,只要当前位置数值
a[j]
比a[i]
小,那么a[i]
就可以接在a[j]
的后面,这个子序列的长度为以j为结尾的最长上升子序列的长度加1,即dp[i] = dp[j]+1
- 以上所有情况取最大值
- 如果i不接在已有的上升子序列后面,那么自己成为一个子序列,这个子序列长度为1。即
2. 求最长下降子序列的方法:
- 状态定义:
dp[i]
:下标从n到i,以i为起始的最长下降子序列的长度 - 状态转移:
- 如果i不接在已有的下降子序列前面,那么自己成为一个子序列,这个子序列长度为1。即
dp[i]=1
。 - 如果i准备接在某个已有的下降子序列前面,那么遍历下标n~i+1,取到的一个下标为j,只要当前位置数值
a[j]
比a[i]
小,那么a[i]
就可以接在a[j]
的前面,这个子序列的长度为以j为起始的最长下降子序列的长度加1,即dp[i] = dp[j]+1
- 以上所有情况取最大值
- 如果i不接在已有的下降子序列前面,那么自己成为一个子序列,这个子序列长度为1。即
【题解代码】
解法1:线性动规
#include<bits/stdc++.h>
using namespace std;
#define N 3005
int main()
{
int n, t[N], dpu[N], dpd[N], r;//dpu[i]:以i为结尾的最长上升子序列 dpd[i]:以i为起始的最长下降子序列
cin >> n;
for(int i = 1; i <= n; ++i)
cin >> t[i];
for(int i = 1; i <= n; ++i)//求最长上升子序列
{
dpu[i] = 1;
for(int j = 1; j < i; ++j)
if(t[j] < t[i])
dpu[i] = max(dpu[i], dpu[j]+1);
}
for(int i = n; i >= 1; --i)//求最长下降子序列
{
dpd[i] = 1;
for(int j = n; j > i; --j)
if(t[j] < t[i])
dpd[i] = max(dpd[i], dpd[j]+1);
}
r = n;//r:去掉的人数,初值设为最大可能去掉的人数
for(int i = 1; i <= n; ++i)//让i站C位,看看要去掉多少人
r = min(r, n-(dpu[i]+dpd[i]-1));//剩下dpu[i]+dpd[i]-1人,去掉n-(dpu[i]+dpd[i]-1)人
cout << r;
return 0;
}